
One-shot learning for solution operators of partial
differential equations

Anran Jiao
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

Haiyang He, Rishikesh Ranade, Jay Pathak
Ansys Inc.

San Jose, CA 95134

Lu Lu
Department of Chemical and Biomolecular Engineering

University of Pennsylvania
Philadelphia, PA 19104

lulu1@seas.upenn.edu

Abstract

Discovering governing equations of a physical system, represented by partial
differential equations (PDEs), from data is a central challenge in a variety of areas
of science and engineering. Current methods require either some prior knowledge
(e.g., candidate PDE terms) to discover the PDE form, or a large dataset to learn a
surrogate model of the PDE solution operator. Here, we propose the first solution
operator learning method that only needs one PDE solution, i.e., one-shot learning.
We first decompose the entire computational domain into small domains, where
we learn a local solution operator, and then we find the coupled solution via either
mesh-based fixed-point iteration or meshfree local-solution-operator informed
neural networks. We demonstrate the effectiveness of our method on different
PDEs, and our method exhibits a strong generalization property.

1 Introduction

Discovering governing equations of a physical system from data is a central challenge in a variety
of areas of science and engineering. These governing equations are usually represented by partial
differential equations (PDEs). For the first scenario, where we know all the terms of the PDE and
only need to infer unknown coefficients from data, many effective methods have been proposed. For
example, we can enforce physics-based constraints to train neural networks that learn the underlying
physics [1, 2, 3, 4, 5, 6, 7, 8]. In the second scenario, we do not know all the PDE terms, but we
have a prior knowledge of all possible candidate terms, several approaches have also developed
recently [9, 10, 11].

In a general setup, discovering PDEs only from data without any prior knowledge is much more
difficult. To address this challenge, instead of discovering the PDE in an explicit form, in most
practical cases, it is sufficient to have a surrogate model of the PDE solution operator that can predict
PDE solutions repeatedly for different conditions (e.g., initial conditions). Very recently, several
approaches have been developed to learn PDE solution operators by using neural networks such as

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

DeepONet [12, 13, 14] and Fourier neural operator [15, 13]. However, these approaches require large
amounts of data to train the networks.

In this work, we propose a novel approach to learn PDE solution operators from only one data
point, i.e., one-shot learning. To our knowledge, the use of one-shot learning in this space is very
limited. [16] and [17] used few shot learning to learn PDEs and applied it to face recognition. Our
method first leverages the locality of PDEs and uses neural networks to learn the system governed by
PDEs at a small computational domain. Then for a new PDE condition, we couple all local domains
to find the PDE solution. A mesh-based fixed-point iteration (FPI) approach is proposed to learn
the PDE solution that satisfies the boundary/initial conditions and local PDE constraints. We also
propose two versions of local-solution-operator informed neural networks (LOINNs), which are
meshfree, to improve the stability and robustness of finding the solution. Moreover, our one-shot
local learning method can extend to multi-dimensional, linear and non-linear PDEs. In this paper, we
describe, in detail, the one-shot local learning method and demonstrate on different PDEs for a range
of conditions.

2 Methods

We first introduce the problem setup of learning solution operators of PDEs and then present our
one-shot learning method.

2.1 Learning solution operators of PDEs

We consider a physical system governed by a PDE defined on a spatio-temporal domain Ω ⊂ Rd:

F [u(x); f(x)] = 0, x = (x1, x2, . . . , xd) ∈ Ω

with suitable initial and boundary conditions B(u(x),x) = 0. u(x) is the solution of the PDE and
f(x) is a forcing term. The solution u depends on f , and thus we define the solution operator as
G : f(x) 7→ u(x). For nonlinear PDEs, G is a nonlinear operator.

In many problems, the PDE of a physical system is unknown or computationally expensive to solve,
and instead, sparse data representing the physical system is available. Specifically, we consider a
dataset T = {(fi, ui)}|T |

i=1, and (fi, ui) is the i-th data point, where ui = G(fi) is the PDE solution
for fi. Our goal is to learn G from the training dataset T , such that for a new f , we can predict the
corresponding solution u = G(f). When T is sufficiently large, then we can learn G straightforwardly
by using neural networks, whose input and output are f and u, respectively. Many networks have
been proposed in this manner such as DeepONet [12] and Fourier neural operator [15]. In this
study, we consider an extreme scenario where we have only one data point for training, i.e., one-shot
learning with |T | = 1, and we let T = {(fT , uT)}. Learning from only one data point is impossible
in general, and here we consider that T is not given, and we can select fT . In addition, instead of
learning G for the entire input space, we only predict f in a neighborhood of some f0, where we
know the solution u0 = G(f0).

2.2 One-shot learning based on locality

To overcome the difficulty of training a machine learning model based on only one data point, we
first consider the fact that derivatives and PDEs are defined locally, i.e., the same PDE is satisfied in
an arbitrary small domain inside Ω.

To demonstrate the idea, we consider a mesh node at the location x∗ (the red node in Fig. 1). In order to
predict the solution u(x∗), instead of considering the entire computational domain, we only consider a
small domain Ω̃ surrounding x∗. We term the points inside Ω̃ as auxiliary points of x∗. If we know the
solution u at the boundary of Ω̃ (∂Ω̃) and f within Ω̃, then u(x∗) is determined by the PDE. Here, we
use a neural network to represent this relationship G̃ : {u(x) : x ∈ ∂Ω̃} ∪ {f(x) : x ∈ Ω̃} 7→ u(x∗).
In addition, considering the flexibility of neural networks, we may use other local information
as network inputs. For example, we can only use the value of f at x∗ and the solutions of all
auxiliary points inside Ω̃ as network inputs: G̃ : {u(x) : x ∈ Ω̃ and x ̸= x∗} ∪ {f(x∗)} 7→ u(x∗).

2

Figure 1: PDE in a lo-
cal domain Ω̃. A neural
network G̃ is trained to
learn the mapping from
all or some of u(x) and
f(x) for x ∈ Ω̃ to
u(x∗).

The size and shape of Ω̃ are also hyperparameters to be chosen. Because
the network learns for a small local domain, by traversing the entire domain
Ω, we can generate many input-output pairs for training the network, which
makes it possible to learn a network from only one PDE solution. We will
compare the performance of several different choices of network inputs
in our numerical experiments.

We first train a neural network G̃ with the dataset T = {(fT , uT)}. Using
the pre-trained model G̃, in the second stage of our method, we propose
three approaches to predict the solution of a new f = f0 + ∆f . Since
the inputs of the pre-trained neural network also include the solution to be
predicted, we cannot predict solution for f directly.

Prediction via a fixed-point iteration (FPI). We first propose a mesh-
based iterative approach (Algorithm 1). Because f is close to f0,we use
u0 as the initial guess of u, and then in each iteration, we apply the trained
network on the current solution as the input to get a new solution. When
the solution is converged, u and f are consistent with respect to the local
operator G, and thus the current u is the solution of our PDE.

Algorithm 1: Predicting the solution u = G(f) for a new f via FPI.
1 Initiate: u(x)← u0(x) for all x ∈ Ω;
2 while u has not converged do
3 for x ∈ Ω do
4 û(x)← G̃(the inputs of u and f in Ω̃(x));
5 Apply boundary and initial conditions to û(x);
6 Update: u(x)← û(x) for all x ∈ Ω;

Prediction via a local-solution-operator informed neural network (LOINN). We also propose a
neural-network based approach, which is meshfree and has more flexibility to handle boundary/initial
conditions and training points inside the computationial domain. We construct a neural network
that takes the coordinates x as the input, and output the approximated solution û(x). To train the
network, we constraint û(x) on G̃ via the loss function defined as the discrepancy between û(x) and
G̃(û and f in Ω̃(x)):

L =
1

|Tl|
∑
x∈Tl

(
û(x)− G̃(û and f in Ω̃(x))

)2

+
1

|Tb|
∑
x∈Tb

∥B(û(x),x)∥22.

Tl and Tb are the data points in the domain constrained by the local solution operator G̃ and on the
boundary, respectively. The network architecture is shown in Fig. 4.

Prediction via a local-solution-operator informed neural network with correction (cLOINN).
To improve the performance of LOINN, we choose the approximated solution as û(x) = N (x) +
u0(x), where N (x) is the neural network output. We show the architecture of cLOINN in Fig. 5.

3 Results

In this section, we show the effectiveness of our proposed method for a few problems, and compare
the accuracy of different choices of the local solution operator G̃ and training data. To generate the
dataset T , we use fT (x) = frandom(x) + f0(x), where frandom(x) ∼ GP(0, k(x1, x2)) is randomly
sampled from a mean-zero Gaussian random field (GRF) with the covariance kernel k(x1, x2) =
σ2 exp(−∥x1 − x2∥2/2l2) (σ: standard deviation; l: correlation length). The numerical solution is
obtained via the finite difference method in an equispaced dense grid with a grid size hd. However,
we learn G in a coarser grid with a step size hc. The choices of σ, l, hd, and hc for each example are
listed in Table 2. After the pre-trained model G̃ is obtained, we use FPI, LOINN, and cLOINN to

3

predict a new f = f0 +∆f , in which ∆f is sampled from a GRF with a correlation length l = 0.1
and different standard deviation σ. In this study, we only consider the structured equispaced grid to
demonstrate our method, but LOINN and cLOINN allow us to randomly sample points in the domain
and on the boundaries.

We first demonstrate the capability of our method by a pedagogical example of a one-dimensional
Poisson equation in Appendix C.

3.1 Linear diffusion equation

The second equation we consider is a linear diffusion equation ∂u
∂t = D ∂2u

∂x2 + f(x) with zero
boundary and initial conditions, where D = 0.01 is the diffusion coefficient, and the solution
operator is G : f 7→ u. We consider two candidate local solution operators (Fig. 2): (A) the simplest
local domain with 4 nodes G̃1: {u(xi, tj−1), u(xi−1, tj), u(xi+1, tj), f(xi, tj)} 7→ u(xi, tj), and
(B) a larger local domain with 6 nodes G̃2: {u(xi−1, tj−1), u(xi, tj−1), u(xi+1, tj−1), u(xi−1, tj),
u(xi+1, tj), f(xi, tj)} 7→ u(xi, tj).

Figure 2: Local domains Ω̃ of the linear
diffusion-reaction equation. Domains
with (A) 4 nodes and (B) 6 nodes.

We want to predict the solution for a new f =
0.9 sin(2πx) + ∆f . When we consider the local solution
operator G̃1, for a fixed σ, FPI and cLOINN both work
well and outperform LOINN (Table 1). When it comes to
G̃2, LOINN and cLOINN give us stable results, but FPI
diverges. We also observe that the errors increase when
σ is larger. The details of error convergence are shown in
Figs. 10 and 11.

Table 1: L2 relative errors of different approaches for linear diffusion equation test on 100
random f .

σ
FPI LOINN cLOINN

G̃1 G̃2 G̃1 G̃2 G̃1 G̃2
0.10 0.51 ± 0.14% - 4.95 ± 2.30% 0.78 ± 0.31% 1.14 ± 0.63% 1.49 ± 0.65%
0.30 1.30 ± 1.08% - 5.06 ± 2.52% 1.15 ± 1.60% 1.76 ± 1.12% 3.31 ± 1.93%
0.50 2.77 ± 2.38% - 6.35 ± 2.52% 3.05 ± 2.51% 3.23 ± 2.49% 5.56 ± 2.99%
0.80 5.82 ± 6.31% - 9.22 ± 5.64% 5.78 ± 6.60% 6.39 ± 7.73% 8.87 ± 7.62%

3.2 Nonlinear diffusion-reaction equation

We consider a nonlinear diffusion-reaction equation with a source term f(x): ∂u
∂t = D ∂2u

∂x2 + ku2 +
f(x), x ∈ [0, 1], t ∈ [0, 1], with zero initial and boundary conditions, where D = 0.01 is the diffusion
coefficient, and k = 0.01 is the reaction rate. The solution operator is the mapping from f(x) to
u(x, t).

We use the same G̃1 as the previous example. In this experiment, the numerical solutions are obtained
from a denser grid of 1001×1001, but we learn G̃1 on a coarser grid of 101×101, 51×51, 26×26,
21×21, or 16×16. Here f0 = 0.9 sin(2πx). We use FPI, LOINN and cLOINN, and compare L2

relative errors with different σ and resolutions. With higher resolution, all approaches perform better
(Fig. 3). The errors can achieve approximately 10% even on a coarser grid of 21×21 (Tables 5, 6, 7,
8, and 9), which demonstrates the robustness and generalizability of our proposed method.

4 Conclusions

Learning solution operators of partial differential equations (PDEs) usually requires a large amount
of training data. In this study, we propose, to the best of our knowledge, the first one-shot method to
learn solution operators from only one PDE solution. In future, we will carry out further validation
on different types of PDEs, extend the method to unstructured meshes, and improve our approaches
for faster convergence and better computational efficiency.

4

Figure 3: L2 relative error of different test functions with σ = 0.10, 0.30, 0.50, 0.80 when using
different grid resolution for the nonlinear diffusion-reaction equation. (A) FPI. (B) LOINN. (C)
cLOINN.

Broader impacts

In this paper, we propose the first one-shot method to learn solution operators of PDEs. With only
one data point, our work points out a direction to improve and accelerate scientific research related to
discovering governing equations of physics systems. In the meanwhile, when employing our method,
we also need to consider ethical implications and prevent abusing machine learning technologies in
applications of science and engineering.

Acknowledgments

This work was supported by the U.S. Department of Energy [DE-SC0022953].

References
[1] G. Pang, L. Lu, and G. E. Karniadakis. fPINNs: Fractional physics-informed neural networks.

SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

[2] D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis. Quantifying total uncertainty in physics-
informed neural networks for solving forward and inverse stochastic problems. Journal of
Computational Physics, 397:108850, 2019.

[3] Y. Chen, L. Lu, G. E. Karniadakis, and L. Dal Negro. Physics-informed neural networks for
inverse problems in nano-optics and metamaterials. Optics Express, 28(8):11618–11633, 2020.

[4] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis. Systems biology informed deep learning
for inferring parameters and hidden dynamics. PLoS Computational Biology, 16(11):e1007575,
2020.

[5] C. Rao, H. Sun, and Y. Liu. Physics-informed deep learning for incompressible laminar flows.
Theoretical and Applied Mechanics Letters, 10(3):207–212, 2020.

[6] J. Wu, H. Xiao, and E. Paterson. Physics-informed machine learning approach for augmenting
turbulence models: A comprehensive framework. Physical Review Fluids, 3(7):074602, 2018.

[7] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox. Lift & learn: Physics-informed machine
learning for large-scale nonlinear dynamical systems. Physica D: Nonlinear Phenomena,
406:132401, 2020.

[8] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving
differential equations. SIAM Review, 63(1):208–228, 2021.

[9] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016.

5

[10] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven discovery of partial
differential equations. Science Advances, 3(4):e1602614, 2017.

[11] Z. Chen, Y. Liu, and H. Sun. Deep learning of physical laws from scarce data. arXiv preprint
arXiv:2005.03448, 2020.

[12] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, 2021.

[13] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and G. E. Karniadakis. A comprehensive
and fair comparison of two neural operators (with practical extensions) based on FAIR data.
Computer Methods in Applied Mechanics and Engineering, 393:114778, 2022.

[14] P. Jin, S. Meng, and L. Lu. MIONet: Learning multiple-input operators via tensor product.
arXiv preprint arXiv:2202.06137, 2022.

[15] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020.

[16] H. Wang, Z. Zhao, and Y. Tang. An effective few-shot learning approach via location-dependent
partial differential equation. Knowledge and Information Systems, pages 1–21, 2019.

[17] C. Fang, Z. Zhao, P. Zhou, and Z. Lin. Feature learning via partial differential equation with
applications to face recognition. Pattern Recognition, 69:14–25, 2017.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Yes

(b) Did you describe the limitations of your work? [Yes] Yes. See Section 4
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This is

not relevant to our work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] Yes, our paper conforms to the ethical guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] No. We will
provide the code for the main experiment once the paper is accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes, all the details are provided in the main paper.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Yes, we report the standard deviation in the tables.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Yes, all the details are provided in
the main paper.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

6

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Schematic of LOINN and cLOINN

Figs. 4 and 5.

Figure 4: The architecture of LOINN.

Figure 5: The architecture of cLOINN.

B Hyperparameters

Tables 2 and 3.

Table 2: Hyperparameters for numerical experiments.

Appendix C Section 3.1 Section 3.2

l 0.01 0.01 0.01
σ 0.5 0.1 0.1
hd 0.1 0.1 0.1
hc 0.01 0.01 0.01, 0.02, 0.04, 0.05, 0.07

C 1D Poisson equation

In this section, we consider a pedagogical example of a one-dimensional Poisson equation ∆u =
f(x), x ∈ [0, 1], with the zero Dirichlet boundary condition u(0) = u(1) = 0, and the solution
operator is G : f 7→ u. We choose the simplest local operator G̃1: {u(xi−1), u(xi+1), f(xi)} 7→
u(xi) and G̃2: {u(xi−1), u(xi+1), f(xi−1), f(xi+1), f(xi)} 7→ u(xi) with 3 nodes. The training
dataset T only has one data point (fT ,G(fT)), and one example of T is shown in Fig. 6.

7

Table 3: Hyperparameters of the neural networks.

Depth Width Optimizer #Iterations

Appendix C G̃1 2 64 Adam + L-BFGS 200000
G̃2 2 32 Adam + L-BFGS 200000

Section 3.1 G̃1 2 32 Adam + L-BFGS 100000
G̃2 2 32 Adam + L-BFGS 100000

Section 3.2 G̃ 2 64 Adam + L-BFGS 150000

We assume that we have the solution u0 for f0 = sin(2πx). We show examples of f = f0 +∆f in
Fig. 7, and the black solid line is f0. When σ is larger, there is a greater difference between f0 and f .
We report the geometric mean of L2 relative errors of all cases in Table 4. The comparison of results
using different σ is shown in Fig. 8. When σ = 0.02, all approaches reached L2 relative error of
about 0.1%. It is observed that in this experiment the local solution operator G̃1 outperforms G̃2 from
Fig. 9. As expected, when σ is smaller, the performance is better. cLOINN outperforms LOINN, and
performs as well as FPI.

Table 4: L2 relative errors of different approaches for 1D Poisson equation test on 100 random
∆f .

σ
FPI LOINN cLOINN

G̃1 G̃2 G̃1 G̃2 G̃1 G̃2

0.02 0.83 ± 0.59% 1.13 ± 0.43% 0.90 ± 0.59% 1.14 ± 0.43% 0.79 ± 0.55% 1.12 ± 0.43%
0.05 1.90 ± 1.79% 1.79 ± 1.39% 1.90 ± 1.79% 1.83 ± 1.41% 1.87 ± 1.80% 1.78 ± 1.39%
0.10 3.88 ± 3.64% 3.73 ± 2.97% 3.90 ± 3.64% 3.82 ± 2.94% 3.94 ± 4.24% 3.74 ± 2.97%
0.15 6.09 ± 6.07% 6.10 ± 4.70% 6.10 ± 6.07% 6.08 ± 4.71% 6.20 ± 6.34% 6.18 ± 7.86%

Figure 6: One example of the training data for the 1D Poisson equation. (A) A random fT
generated from GRF. (B) The corresponding solution uT .

D Linear diffusion equation

Fig. 10 and Table 5.

E Nonlinear diffusion-reaction equation

Tables 5, 6, 7, 8 and 9.

8

Figure 7: Examples of some random f = f0 +∆f with ∆f sampled from GRF of different σ
and l = 0.1. (A) σ = 0.02. (B) σ = 0.05. (C) σ = 0.10. (C) σ = 0.15.

Figure 8: Learning solution of the 1D Poisson equation. The L2 relative errors tested on 100
random ∆f sampled from GRF of various σ and l = 0.1 with local operator (A to C) G̃1 and (D to
F) G̃2. (A and D) FPI. (B and E) LOINN. (C and F) cLOINN.

Figure 9: Learning solution of the 1D Poisson equation with different local operators G̃. The L2

relative errors tested on 100 random ∆f sampled from GRF of σ = 0.02 and l = 0.1 using (A) FPI,
(B) LOINN, and (C) cLOINN.

Table 5: L2 relative errors of different approaches for nonlinear diffusion-reaction equation test
on 100 random ∆f . We learn the local operator on a coarser mesh size of 101.

σ FPI LOINN cLOINN

0.10 0.32 ± 0.08% 0.52 ± 0.20% 0.49 ± 0.21%
0.30 0.91 ± 0.51% 1.13 ± 0.60% 1.02 ± 0.62%
0.50 1.81 ± 1.37% 2.26 ± 1.46% 2.30 ± 1.52%
0.80 3.32 ± 3.54% 2.89 ± 2.16% 2.96 ± 2.39%

9

Figure 10: Learning solution of the linear diffusion equation with different local operators G̃.
The L2 relative errors tested on 100 random f sampled from GRF of σ = 0.10 and l = 0.1 using (A)
LOINN and (B) cLOINN.

Figure 11: Learning solution of the linear diffusion equation. The L2 relative errors tested on 100
random ∆f sampled from GRF of various σ and l = 0.1 with local operator (A to C) G̃1 and (D and
E) G̃2. (A) FPI. (B and D) LOINN. (C and E) cLOINN.

Table 6: L2 relative errors of different approaches for nonlinear diffusion-reaction equation test
on 100 random f . We learn the local operator on a coarser mesh size of 51.

σ FPI LOINN cLOINN

0.10 0.96 ± 0.30% 1.02 ± 0.30% 1.02 ± 0.29%
0.30 2.50 ± 0.78% 2.57 ± 0.77% 2.54 ± 0.78%
0.50 4.21 ± 1.47% 4.28 ± 1.46% 4.34 ± 1.52%
0.80 6.34 ± 2.59% 6.45 ± 2.57% 6.63 ± 2.94%

Table 7: L2 relative errors of different approaches for nonlinear diffusion-reaction equation test
on 100 random f . We learn the local operator on a coarser mesh size of 26.

σ FPI LOINN cLOINN

0.10 1.23 ± 0.35% 1.19 ± 0.34% 1.16 ± 0.34%
0.30 3.58 ± 1.27% 3.60 ± 1.25% 3.54 ± 1.29%
0.50 5.88 ± 1.94% 5.36 ± 1.85% 5.59 ± 1.84%
0.80 8.15 ± 3.26% 8.12 ± 3.50% 8.52 ± 4.18%

10

Table 8: L2 relative errors of different approaches for nonlinear diffusion-reaction equation test
on 100 random f . We learn the local operator on a coarser mesh size of 21.

σ FPI LOINN cLOINN

0.10 2.32 ± 0.59% 2.44 ± 0.64% 2.40 ± 0.67%
0.30 6.03 ± 2.06% 6.42 ± 1.92% 6.29 ± 1.94%
0.50 10.41 ± 3.40% 10.38 ± 4.13% 10.35 ± 4.29%
0.80 13.18 ± 4.94% 10.66 ± 4.37% 10.59 ± 4.52%

Table 9: L2 relative errors of different approaches for nonlinear diffusion-reaction equation test
on 100 random f . We learn the local operator on a coarser mesh size of 16.

σ FPI LOINN cLOINN

0.10 8.58 ± 0.27% 8.60 ± 0.27% 8.58 ± 0.27%
0.30 10.93 ± 1.84% 10.94 ± 1.85% 10.93 ± 1.84%
0.50 13.41 ± 3.51% 13.42 ± 3.41% 13.42 ± 3.40%
0.80 17.35 ± 5.26% 17.37 ± 5.25% 17.36 ± 5.26%

11

	Introduction
	Methods
	Learning solution operators of PDEs
	One-shot learning based on locality

	Results
	Linear diffusion equation
	Nonlinear diffusion-reaction equation

	Conclusions
	Schematic of LOINN and cLOINN
	Hyperparameters
	1D Poisson equation
	Linear diffusion equation
	Nonlinear diffusion-reaction equation

