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Abstract

We study a teacher-student rule learning scenario, where the teacher is determined
by a local rule and the student model is a uniform tensor-network attention model.
The student model also implements a map from variable-size binary inputs to the
latent space V = Rd, where d is the bond dimension of the student model. Using
gradient descent learning we find a second-order phase transition in the test error.
At the transition we observe a sudden drop in the effective dimension of the mapped
training data. We also find that small-effective dimension corresponds to structure
formation in the latent space V .

1 Introduction

We can improve generalisation properties of deep neural networks by increasing the number of
parameters (the double descend phenomenon [1, 2, 3, 4]) and by training past zero train error [5, 6].
Recently two empirical observations have been made in the terminal phase of training, i.e. when
training past zero train error. Namely, neural collapse [7] and grokking (generalisation beyond
over-fitting) [8].

Neural collapse refers to the collapse of the N−dimensional, last-layer features (input to the
last/classification layer) [7] to a (C − 1)-dimensional equiangular tight frame (ETF) structure, where
C is the number of classes. We can partially understand neural collapse within the unconstrained
features and local elasticity models [9]. However, its role in generalisation, relation to grokking, and
appearance of different latent space structures are still not completely understood.

Grokking also occurs in the terminal phase of training and refers to a sudden decrease of the test
error from approximately one to zero [8]. This transition has been discussed within an effective
theory approach [10], where an empirical connection between representation/structure formation and
generalisation has been made. A related empirical study [11] established a relation between grokking
and training loss spikes and weight norm increase. However, it is unclear how to reconcile grokking
with the standard generalisation theory based on statistical methods [12]. Finally, it is not yet clear
what is the minimal framework within which we can understand these phenomena. This paper tries to
fill this gap by proposing a novel teacher-student learning setting that features grokking and structure
formation 2.
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2https://github.com/qml-tn/grokking/

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

https://qmltn.ai/
https://github.com/qml-tn/grokking/


2 Learning a local rule

In the standard statistical-learning scenario, we determine the the rule by a simple one-layer teacher
model

f(x) = sgn(x · w + b), (1)

where x is the input vector, w is the weight vector, and b is the bias– x,w ∈ RN , and b ∈ R.
To facilitate analytical calculations generalisation properties of the model are discussed in the
thermodynamics limit, i.e. N → ∞, with appropriate scaling of the input and weight vectors with
N . In this case, all values of the input contribute to the final result, which leads to a mean-field like
behaviour, i.e. the value of the input at any particular position has only infinitesimal influence on the
result/rule.

We will study the opposite, local scenario x → y, where x, y ∈ {−1, 1}M . The i-th component of
the output vector, i.e. yi, will depend only on a K-neighborhood of the input x at position i,

yi = rule(xi−K , . . . , xi, . . . xi+K). (2)

We call such model a K−local model. The Eq. 2 describes a well-known cellular automata compu-
tational paradigm. Cellular automata are a universal discrete space-time dynamical systems with a
finite set of possible states at each position [13, 14]. We define a cellular automaton by a set of rules
which transform one configuration of states into another configuration. We will consider the rule 30
one-dimensional automaton (K = 1) [13, 14], which exhibits chaotic behaviour and is defined by
the rule yi = rule30(xi−1, xi, xi+1). The next state of the cell i, i.e. yi, is determined by the current
configuration at cells i− 1, i, and i+ 1, i.e. xi−1, xi, xi+1, as follows

xi−1,xi,xi+1 -1,-1,-1 -1,-1,1 -1,1,-1 -1,1,1 1,-1,-1 1,-1,1 1,1,-1 1,1,1
yi = rule30(xi−1,xi,xi+1) -1 1 1 1 1 -1 -1 -1 .

(3)

The rule-30 automaton has already been discussed in the context of sequence-to-sequence prediction with
tensor networks [15, 16, 17], however, no grokking phenomena have been reported. To study the effect of the
neighbourhood size K, we shall consider a rule defined by K consecutive applications of rule 30. We will refer
to such rule as a K–local rules.

In summary, we modify the standard perceptron teacher-student setup by restricting the teacher model to local
instead of global rules. The teacher will be modelled by a local map transforming a sequence x into the sequence
y. The task will be to approximate the chosen map by training on a finite set of input samples of length M .
For a finite M we will choose open boundary conditions with x0 = xM+1 = −1. The test set will include
all possible inputs with sizes Mtest = 3, 4, . . . ,Mmax = 1000. We will determine the error as the ratio of
incorrectly predicted values yi.

3 Tensor-network attention model

In this section, we will introduce a simplified version of the tensor network proposed in [17], which will serve as
a student model. The tenor-network model has two parts: an embedding layer and a tensor-network attention
layer. We define the embedding layer with a local embedding function ϕ(xi) : {−1, 1} → R2 as

ϕ(−1) =

(
1
0

)
, ϕ(1) =

(
0
1

)
. (4)

After the embedding, we apply the tensor-network attention determined by an attention tensor A and a classifica-
tion tensor B. First, we construct matrices A(i) by contracting the attention tensor A with the local embedding
vectors ϕ(xi)

Aµ,ν(i) =

2∑
j=1

Aµ,ν,jϕ(xi)j . (5)

Then, we use the matrices A(i) to construct the left and right context matrices HL,R(i),

HL(1) = 1d, HL(i) = HL(i− 1)A(i− 1), (6)

HR(M) = G, HR(i) = A(i+ 1)HR(i+ 1). (7)

The matrix G determines the boundary conditions and is set to G = vL ⊗ vR. The boundary vectors vL,R ∈ Rd

are determined as left and right eigenvectors of the matrix A0 corresponding to the largest eigenvalue. We obtain
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the final local weight vector w(i) by contracting the tensor B with the normalised left and right context matrices
HL,R

N = HL,R/||HL,R||2

w(i)j = Tr
(
HL

N(i)BjH
R
N (i)

)
, j = 1, 2, i = 1, . . . ,M, (8)

where Bj denotes the matrix with elements [Bj ]µ,ν = Bµ,ν,j . We calculate the attention layer output at position
i as

ŷi = w(i) · ϕ(xi). (9)

We calculate the final model output by using the sign nonlinearity f(x) = sgn(ŷ). The described tensor-
network layer is a generalisation of the linear-dot attention mechanism (see [17]). Therefore, we refer to it as a
tensor-network attention.

Tensor network map The described tensor-network attention model also implements a map from inputs of
variable length M to vectors of length zi(x) ∈ V = R2d2 , where

zi(x) = HR
N (i)HL

N(i)⊗ ϕ(xi). (10)

By considering zi(x) as inputs we interpret the model defined by Eq. 9 as a perceptron, namely

ŷ = zi(x) · B⃗, (11)

where B⃗ denotes the vectorised classification tensor B. Interestingly, for any K−local rule, we can find
4K -dimensional matrices A for which the transformed problem is solvable by a simple perceptron model and
exhibits the grokking phenomena. Therefore, the standard 1/α dependence on the training set size (see [12])
seems to be a consequence of the infinite-range rule. For any local rule, we will observe grokking.

4 Results

In all experiments we initialise the model with a random initial condition, where all the entries of the tensors
A,B are uncorrelated and sampled according to a normal distribution with zero mean and unit variance. We
train the model with the Adam optimiser (with standard parameter setting) and learning rate 0.005. We use the
mean squared error loss with L1,2 regularisation strength λ1,2 ∈ [0, 0.001], which is the same for the attention
tensor A and the classifier tensor B. We also use the sigmoid non-linearity instead of the sign non-linearity to
improve the training stability and reduce the training time. We perform tests in three situations, namely, without
regularisation (Example 1: λ1,2 = 0), with L2 regularisation (Example 2: λ1 = 0, λ2 = 0.0001), and with
L1 regularisation (Example 3: λ1 = 0, λ2 = 0.001). We chose the regularisation strengths λ1,2 to be the
largest regularisation strengths with only few spikes in the terminal phase of training. Unless specified otherwise
we use bond dimension d = 40.

Average test error and average effective dimension First, we investigate the dynamics of the average
test error and calculate the critical exponent ν (see Fig. 1). The test error drops to zero at the grokking transition,
i.e. at time tϵ. Following the grokking transition, the test error is non-zero and experiences fluctuations.
These fluctuations can be detected as sharp increases in the training loss and are more common in models
with large regularisation (see also Fig. 2). Therefore, the L1,2 regularised models have larger average test
error after the grokking transition. We also observe that the critical exponent decreases upon increasing
regularisation. Larger regularisation leads to a sharper transition to zero test error. We also observe the effective
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Figure 1: The average test error at the phase transition. We align the first point where the test error
becomes zero (i.e. the time tϵ) and take the average over 1000 initialisations of the model parameters.
The colors correspond to Example 1 (green), Example 2 (red), and Example 3 (blue). Shaded
regions show the standard deviation. Critical exponents and Deff are reported in the legends of the
figures.
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dimension at the grokking transition. We calculate the effective dimension Deff as the exponent of the entropy
S = −

∑
k σk log σk, where σk denote the fraction of the variance explained by the kth principal component of

the training dataset features zi(x). As shown in Fig. 1, the average effective dimension drops significantly just
before the grokking transition. We observe that regularisation decreases the effective dimension of the mapped
vectors zi(x).

Structure formation and grokking We show in Fig. 2 that small effective dimension signals an emergent
latent space structure which, however, can be different in each example. Hence, we argue that the sharp decrease
in the effective dimension is a consequence of structure formation. Grokking and structure formation are
therefore related on average as shown in Fig. 1 but not for every trained model individually (as argued in
[10]). We disentangle model-wise structure formation from model-wise grokking by observing specific training
examples. In Fig. 2 we show the structures appearing in the features vLHL

n (i) with bond dimension d = 3. We
observe that the structure of the latent space data changes also during a single run. This can be detected as a
spike in the training loss or as a step-like jump in the effective dimension. The structures can change from lower
to higher dimensional and vice versa. Finally, we also show that we can have a small generalisation/test error
with complex or non apparent latent space structures (the structure marked by × in Fig. 2). These empirical
observations suggest that grokking and structure formation are not related model wise.
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Figure 2: Several emergent structures in the latent space V . The left plots show the effective dimension
Deff (top), train loss (middle), and test error (bottom). The gray line corresponds to training without
regularisation and the orange line to training with λ1 = 0.01. The black markers show the value of
the plotted quantities at specific times marked by vertical dotted lines. The right panels show the
structure of the features at the marked times: top row shows the L1 regularised case, bottom row
shows the non-regularised case.

Grokking time We define the grokking time as the difference between tϵ (zero-test-error time) and the time
at which the training error becomes zero. We observe the grokking time in the Examples 1-3 discussed above
(see Fig. 3 left panel). Taking the non-regularised case (Example 1) as the baseline, we find that regularisation
(Example 3) decreases the average grokking time tG significantly more than L2 regularisation (Example 2).
Since the grokking time is measured relative to the time at which the zero train error is achieved, we estimate
also the density of tϵ (see Fig. 3 right panel). We find that both L1 and L2 reduce tϵ. Therefore, both, the L1

and the L2 regularisation decrease the number of steps required for good generalisation. In addition, the L1

generalisation seems to be more efficient, in the sense, that there is a shorter time interval with a large difference
between train and test error.

5 Discussion and summary

While various concepts and tools from physics such as entropy, replica trick, tensor networks, effective theory,
have proven useful in machine learning generalisation theory, the notion of locality has, to our knowledge, not
been discussed thus far. By using a novel tensor-network attention model (likewise inspired by physics) we
show that locality plays an important role when learning a rule. We show that local rules lead in general to
second-order phase transitions. We numerically calculate the critical exponent and show that the phase transition
is also related to structure formation in latent space.
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Figure 3: The estimated grokking-time density and tϵ density. The colors correspond to Example
1 (green), Example 3 (red), and Example 3 (blue). The vertical lines correspond to the averages
reported in the legends of the panels. In the legends we show the critical times for the corresponding
examples.

6 Broader impact

The developed tensor-network map offers a new tool for studying generalisation properties of local rules (local
teacher-student models), which could lead to more complex learning dynamics (compared to the standard
infinite-range rules).

Our results provide further evidence about the benefits of the terminal phase of training and can be relevant
also for deep learning training practice. We conjecture that good generalisation is more probable in models
with latent space data distributions with small effective dimension. We also find numerical evidence that L1

regularisation improves generalisation properties of models compared to L2 regularisation (especially in the last
classification layer). Further, we show that spikes in the loss (which often occur during training of deep neural
networks) correspond to latent space structural changes that can be beneficial or detrimental for generalisation.
Assuming this is the case also in deep networks, the latent space effective dimension can be used to decide
whether to revert the model to a state before the spike or to continue training with the current model. We also find
that train loss spikes are more common in models with regularisation. While larger regularisation significantly
decreases the zero test error time tϵ, smaller regularisation (or lack thereof) in the terminal phase of training
leads to simpler structures and better generalisation. These finding may also be relevant in more complex models
where grokking and structure formation are observed.
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A Compute Resources

All our experiments are performed on a compute cluster managed by Slurm Workload Manager. Each node has
access to four NVidia A100 with 40 GB HBMI2. Estimated total compute time for presented experiments is 110
days.
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