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Abstract

We demonstrate the utility of physics-informed neural networks (PINNs) as solvers
for the non-relativistic, time-dependent Schrödinger equation. We study the perfor-
mance and generalisability of PINN solvers on the time evolution of a quantum
harmonic oscillator across varying system parameters, domains, and energy states.

1 Introduction

In recent years, there was a surge in the use of machine learning (ML) techniques in the physical
sciences [1], referred to as scientific machine learning. This has led to the rise of physics-informed
machine learning [2], where physics-based constraints are used to guide ML models, achieved by
incorporating structured prior information derived from physical laws into the learning algorithm.

Given the importance of numerical simulations across scientific disciplines, many ML surrogates for
solving differential equations on a large scale [3] have been developed. These approaches include the
deep Galerkin method [4], PINNs [5], neural operators [6], and DeepONets [7].

PINNs are a class of ML algorithms for solving forward and inverse problems that are represented
by partial differential equations. As opposed to numerical solvers where a new solution must be
computed whenever there is a change in the domain or system parameters, PINNs offer a mesh-
free alternative where the solver can be used for systems on arbitrary grid resolutions and system
parameters at a fixed inference cost [8]. While training the PINN models can be a substantial
computational cost initially, it can be amortized over time due to rapid inference over a wider set
of system parameters. However, PINNs also have demonstrated shortcomings such as spectral bias
against high-frequency solutions [9], overfitting to trivial solutions [10], and poor performance for
systems with shocks [11] and for larger time domains [12]. The theory and applications of PINNs
are active areas of research, with developments such as the RNN-DCT-PINN [12], the gated-PINN
[13], and the variational-PINN [14] which increase their performance and scalability. Popular ML
frameworks for PINN models include Neural Solvers [13], Modulus [15], and DeepXDE [16].

The non-relativistic Schrödinger equation is the fundamental equation for describing quantum systems.
The wavefunction ϕ, from which all observables of a system can be calculated, is obtained by solving
it. We distinguish two classes of problems: the time-independent Schrödinger equation (TISE) yields
the wavefunction ϕ and the associated energies for a static system in terms of an eigenvalue problem,
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while the time-dependent Schrödinger equation (TDSE) describes the dynamics of a quantum system,
i.e., the time evolution of ϕ. Prior works have dealt with using ML to solve the SE. These include
models such as fully-connected networks (FCN) [17, 18], reservoir computing [19], PINNs [20] for
the eigenvalue problem defined by the TISE, and residual networks [21] and LSTMs [22] for the
TDSE. The TDSE has also been used as benchmark for PINNs [5, 2, 13]. However, in this work, we
go beyond prior investigations by examining the utility of PINN solvers for the TDSE across varying
system parameters, domains, and energy states.

2 Methods

2.1 PINNs

PINNs are constructed by encoding the constraints posed by a given differential equation and
its boundary conditions into the loss function of a deep learning model, usually, an FCN. These
constraints guide the network to finding a solution to the differential equation.

A partial differential equation (PDE) is defined by f with solution u(x, t) governed by
f(u) := ut +N [u; θ], x ∈ Ω, t ∈ [0, T ] , f(u) = 0 , (1)

where N [u; θ] is a differential operator parameterised by θ, Ω ∈ RD, and x = (x1, x2, ..., xd)
with boundary conditions B(u,x, t) = 0 on ∂Ω and initial conditions T (u,x, t) = 0 at t = 0 .

A neural network unet : RD+1 7→ R1 is constructed as a surrogate model fnet = f(unet) for the
true solution u. Constraints are encoded in the loss term L for neural network optimization

L = λfLf + λBCLBC + λICLIC , (2)
with λf , λBC , λIC being the regularization parameters. The PDE loss Lf =

(1/Nf )
∑Nf
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imposes the initial conditions. Both of them are calculated on a set of NBC boundary points and
NIC initial points, respectively, where unet refers to the approximate solution predicted by the PINN
and u denotes the true value according to the boundary and initial conditions at that point. The
distribution of collocation points is visualized in Fig. 1b.

Once trained, the neural network is used to solve the PDE, potentially for a range of parameters θ [8].
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Figure 1: PINN Architecture

2.2 Time Dependent Schrödinger Equation

A PINN is constructed for solving the TDSE

i
∂ϕ(r, t)

∂t
− Ĥϕ(r, t) = 0 , (3)
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where Ĥ denotes the Hamiltonian of the problem and ϕ(r, t) the solution which is commonly referred
to as a wavefunction that depends on a spatial coordinate r in three-dimensional space and time t.
Note that we adopt Hartree atomic units, i.e., ℏ = kB = me = 1, so energies are measured in Hartree
and lengths in Bohr radii. The Hamiltonian represents the specific problem, such as the kinetic and
potential energies of particle species and their interactions among each other and with external fields.

In this conceptual work, we resort to a simple but archetypical model problem, namely non-interacting
and spinless particles in a quantum harmonic oscillator in one spatial dimension with Hamiltonian

Ĥx = −1

2

∂2

∂x2
+

ω2

2
x2 , (4)

where ω denotes the frequency of the harmonic oscillator. The most fundamental kind of quantum
dynamics is achieved by a superposition of eigenstates which are solutions of the corresponding
TISE. The analytical eigenstates of the harmonic oscillator are ϕn(x) = ϕ0(x)(2

nn!)−1/2Hn(
√
ωx)

and the corresponding eigenvalues are ϵn = ω(n+ 1/2) with n ∈ N, where Hn denotes the Hermite
polynomials and ϕ0(x) = (ω/π)1/4 exp

(
−ωx2/2

)
. Superimposing two eigenstates ϕm,n(x, t) =[

e−iϵmtϕm(x) + e−iϵntϕn(x)
]
/
√
2 yields a solution of the TDSE, where the entire dynamics takes

place due to the phases exp (−iϵnt). Since the neural network is constrained to R, the complex-
valued solutions can be represented as ϕ(x, t) = u + iv, where u = Re(ϕ) is the real part and
v = Im(ϕ) the imaginary part. The TDSE can then be written as in terms of u and v as

(
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2
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+
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2
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)
= 0 . (5)

Consequently, a PINN was constructed with inputs (x, t, ω) and outputs (unet, vnet). The error of
the predictions was quantified on the probability density |ϕ(x, t)|2 = u(x, t)2 + v(x, t)2.

3 Results

The domains for the TDSE of the quantum harmonic oscillator are x ∈ [−π, π] and t ∈ [0, 2π] with
Dirichlet boundary conditions u(x0, t) = 0, v(x0, t) = 0 for x0 ∈ {−π, π} and initial conditions
u(x, 0) = Re [ϕm,n(x, 0)] = ϕm,n(x, 0), v(x, 0) = Im [ϕm,n(x, 0)] = 0.

Table 1: Results. (Here FP denotes FCN-PINN.)

System Solver MSE |ϕ|2 Training Inference
time (min) time (s)

Baseline FP 2.94e-5 16.12 4.26

Generalisability FP (Interpolation) (2.72±2.18)e-5 130.72 (9.79±0.10)
FP (Extrapolation) (2.65±1.56)e-3

Larger time domain FP 4.38e-2 57.56 12.25
FP (Causal) 3.62e-3 63.33 12.35

Higher energy states FP 1.25e-2 29.73 3.98
FP (Causal) 1.49e-3 85.85 4.28

3.1 Baseline

The initial surrogate model was created for a one-dimensional quantum harmonic oscillator with a
fixed parameter ω = 1. The initial state was chosen as a superposition of the ground and the first
excited states ϕ0,1(x, t) =

[
e−iϵ0tϕ0(x) + e−iϵ1tϕ1(x)

]
/
√
2.
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Figure 2: True and predicted values for density |ϕ|2 for ϕ0,1(x, t) with ω = 1.0.

Fig. 2 shows the results for the baseline model. It illustrates how the probability density of the
superpositions state propagates in time, where the left plot shows the prediction of the PINN and the
center plot the ground truth. As shown, on the right plot, the PINN solver yields the structure of the
solution very accurately. The spatially and temporally resolved MSEs are in the order of 10−5.

3.2 Generalisability

To demonstrate the performance over changing parameters, the PINN was trained for the same initial
state as the baseline in a range of values ω ∈ [0.75, 2.0]. After training, the inference was carried
out for ω ∈ [0.5, 2.5]. As illustrated in Fig. 3, good performance was observed on previously unseen
ω values within the range of the training range (interpolation) but accuracy diminished somewhat
as the values of ω deviated from the training range during inference (extrapolation). This can be
attributed to the change in the width of the wavefunction relative to our fixed space domain. The
width is inversely proportional to ω. For lower values of ω, the width is too broad and violates the
fixed domain boundary conditions. For higher values of ω, the width is too narrow and the network
underfits to a zero-valued solution. This problem could be alleviated by using dynamic domains
while training PINNs, such that the domain adjusts to the width of the wavefunction.

Figure 3: Log MSE |ϕ|2 for
PINN solutions over varying
values of ω. Training range
within red dashed lines.

Figure 4: MSE |ϕ|2 over time
for large time domain.

Figure 5: MSE |ϕ|2 over time
for higher energy states.

3.3 Larger time domains

Next, a longer time domain t ∈ [0, 6π] for the baseline ϕ0,1(x, t) system was studied. The FCN-PINN
resulted in a high mean error in the order of 10−2 with a loss of structure at later time steps as shown
in Fig. 4 (orange curve). To mitigate this, the loss function was modified to take causality into
account [23]. This was done by splitting the time domain into equally spaced components, with the
loss for each component being a weighted cumulative sum of Lf of the domains up to that component.
This enforces causality in the time domain. With this modification, the error is reduced to 10−3 with
the correct structure preserved throughout the time domain (blue curve).

3.4 Higher energy states

As a demonstration for higher energy states, the FCN-PINN was trained on the initial state
ϕ0,3(x, t) =

[
e−iϵ0tϕ0(x) + e−iϵ3tϕ3(x)

]
/
√
2 . The predicted solution with the default FCN

architecture falsely converged to the static ground state ϕ0 as time evolved. As can be seen from
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Fig. 5, the error increases significantly for later time steps (orange curve). Subsequently, a PINN
with a loss function that preserves causality, as explained in Section 3.3, was used. This solves the
problem of false convergence. It captures the structure of the solution over a long period of time
evolution with a low MSE on the order of 10−3 (blue curve). In both sec. 3.3 and 3.4, the FCN-PINN
prediction converges to a static solution, leading to oscillatory behaviour in the error.

4 Future Work

There has been a rise in the applications of machine learning in computational chemistry and materials
science [24]. Density functional theory (DFT) is the most widely used method for computing chemical
and material properties. Hence, DFT calculations utilize a considerable proportion of computational
resources on academic HPC systems. The underlying equations for time-dependent DFT are the
Schrödinger-like time-dependent Kohn-Sham (TDKS) equations:[

−1

2
∇2 + vs[n](r, t)

]
ϕj(r, t) = i

∂ϕj(r, t)

∂t
(6)

where the electronic density n(r, t) =
∑

j |ϕj(r, t)|2 is the quantity of interest. The Kohn-Sham
potential vs[n](r, t) is a functional of the density n which is a function of position r and time t. These
coupled equations are solved through iterative numerical algorithms which represent a significant
computational cost in the TDDFT workflow[25, 26]. Given the effectiveness of PINNs for the TDSE,
the next step is to use PINNs to accelerate TDKS calculations.

5 Conclusion

PINNs act as surrogate models for solving the TDSE. The primary advantage of PINNs over traditional
numerical solvers is that they are mesh-free and can be used to perform simulations at arbitrary
resolutions once sufficiently trained. Depending upon the training regiment, PINNs can be generalized
to a range of the PDE parameter space. Their mesh-free nature and generalisability can be utilized
for accelerating simulations of electron dynamics. While FCN-PINNs are not sufficient to reproduce
complex dynamics, this can be alleviated with techniques such as causal training. Extending this
work to TDDFT, a PINN framework would enable on-the-fly modeling of the electronic response
properties of laser-excited or shock-compressed samples in various scattering experiments that are
conducted at photon sources around the globe. This would enable fast simulations that generalize
well over the input parameters of the experimental setup.

6 Broader Impact

While this work is at a preliminary stage, we believe that accelerating TDDFT calculations is a net
benefit. Accelerating TDDFT calculations has a broad impact on the fields such as computational
chemistry and materials science with applications in myriad domains such as materials design, drug
discovery, and green energy generation. Results obtained in this line of research can also be used to
accelerate numerical simulations in other fields of science and engineering.
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A Computation Details

A.1 Network architecture and hyperparameters

A.1.1 Sampling

We used a batch size of 3140 points for the interior, 200 points for the boundary conditions and 314
points for initial conditions sampled from a uniform distribution.

A.1.2 Architecture

Because of the derivatives needed in the PINN loss, the activation function has to be k+1 differentiable
for a PDE of order k. This restricts the choice of activation functions to functions like tanh and SiLU.

FCN-PINN (Sections 3.1, 3.2, 3.3, 3.4): We used a fully-connected network with 6 layers consisting of
512 neurons each. The activation function used was tanh. We calculate the loss function as described
in Eq. 2 with λf = λBC = λIC = 1.0. We use the ADAM optimizer with β1 = 0.09, β2 = 0.999
. The learning rate is initialized at α0 = 0.001 with exponential decay rate γ = 0.9 at decay steps
tγ = 2000 training steps with schedule αt = α0γ

t
tγ .

For the generalisability study (Section 3.2), we used a fully-connected network with 12 layers
consisting of 512 neurons each.

Causal-PINN (Sections 3.3, 3.4): We used a fully-connected network with 6 layers consisting of
512 neurons each. The activation function used was SiLU. We calculate the loss function with the
causal training scheme described in [23]. We use the ADAM optimizer with β1 = 0.09, β2 = 0.999 .
The learning rate is initialized at α0 = 0.001 with exponential decay rate γ = 0.95 at decay steps
tγ = 100 training steps with schedule αt = α0γ

t
tγ .

In both cases, training is continued till convergence is reached for MSE |ϕ|2 or maximum number of
training iterations for each experiment.

A.1.3 Evaluation

The PINN solution unet(x, t), vnet(x, t) is used to calculate the density |ϕnet(x, t)|2 = u2
net(x, t) +

v2net(x, t) on a grid with resolution ∆x,∆t = 0.01au in the domain specified for that system, i.e.
628× 628 uniformly-spaced points in Sections 3.1, 3.2, 3.4 and 1884× 628 points in Section 3.3.

MSE|ϕnet(x, t)|2 =
1

N

N∑
i=1

∣∣|ϕ(xi, ti)|2 − |ϕnet(xi, ti)|2
∣∣2 , (7)
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calculated over all N points of the evaluation grid, where ϕ(xi, ti) is the analytical solution.

A.2 Software and Hardware

A.2.1 Software

We utilise the Modulus PINN framework [15] and PyTorch ML framework [27] in this work.

A.2.2 Hardware

All experiments were carried out on nodes consisting of one 12 Core Intel Xeon 3.0 GHz CPU and
one Nvidia Tesla V100 (32 GB) GPU.

HPC Usage: We estimate total usage to be 18 GPU-hours for the experiments in this paper.

B Analytical Solutions

The analytical solution for the baseline is

ϕ0,1(x, t) =
1√
2

4

√
ω

π
exp

(
−ωx2

2

)(
exp

(
−i

ω

2
t
)
+ exp

(
−i

3ω

2
t

)√
2ωx

)
. (8)

The analytical solution in higher energy state is

ϕ0,3(x, t) =
1√
2

4

√
ω

π
exp

(
−ωx2

2

)(
exp

(
−i

ω

2
t
)
+ exp

(
−i

7ω

2
t

)
1√
3

(
2
√
ω3x3 − 3

√
ωx

))
.

(9)
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