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Abstract

This work presents a physics-informed neural network (PINN) based framework
to model the strain-rate and temperature dependence of the deformation fields
in elastic-viscoplastic solids. To avoid unbalanced back-propagated gradients
during training, the proposed framework uses a simple strategy with no added
computational complexity for selecting scalar weights that balance the interplay
between different terms in the physics-based loss function. In addition, we highlight
a fundamental challenge involving the selection of appropriate model outputs so
that the mechanical problem can be faithfully solved using a PINN-based approach.
We demonstrate the effectiveness of this approach by studying two test problems
modeling the elastic-viscoplastic deformation in solids at different strain rates
and temperatures, respectively. Our results show that the proposed PINN-based
approach can accurately predict the spatio-temporal evolution of deformation in
elastic-viscoplastic materials.

1 Introduction

Modeling the elastic-plastic response of materials using conventional numerical methods, such as
finite element method, isogeometric analysis, or mesh-free methods, has always been computationally
expensive due to the inherent iterative nature of discretization algorithms used in such methods. Fur-
thermore, multitude of ‘fundamentally accurate’ theories for the high-fidelity modeling of dislocation
mediated plastic deformation at different scales [[IH12] or fracture modeling in materials [[13H17]], is
bringing these numerical solvers to their limits. In this context, PINNs offer great opportunities to
speed up (nonlinear) mechanical modeling of materials.

The idea of using neural networks to learn the solution of partial differential equations (PDEs) by
minimizing a loss function, comprising the residual error of governing PDEs and its initial/boundary
conditions, has been around for some time [|18,/19]]. More recently, Raissi et. al [20,21] have extended
this concept towards PINNs which can solve the forward and inverse problems involving general
nonlinear PDEs by relying on small or even zero labeled datasets. Several applications of PINNs
can be found in the literature ranging from modeling of fluid flows and Navier Stokes equations
[22H27]], cardiovascular systems [28,29], and material modeling [30-35]], among others. Compared
to traditional data-driven approaches for predicting path-dependent plastic behavior in metals [36-40],
PINNSs can learn high-fidelity surrogate models while simultaneously reducing (or even eliminating)
the need for bigger training datasets. However, developing a physics-informed neural network to
model the spatio-temporal variation of deformation in elastic-plastic solids, along with its dependence
on strain-rate and temperature, poses several technical challenges.
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In this work, we take a first step in highlighting these challenges and demonstrate the strength
of PINNs for modeling elastic-viscoplastic deformation in materials. In particular, we focus on
predicting the spatio-temporally varying deformation fields (displacement, stress, and plastic strain)
under different strain rates (i.e., applied loading rate) and temperatures, respectively. We present
a detailed discussion on the construction of (physics-based) composite loss along with a brief
summary on ways to avoid unbalanced back-propagated (exploding) gradients during model training.
Furthermore, a strategy with no added computational complexity for choosing the scalar weights that
balance the interplay between different terms in composite loss is also proposed. Although the current
work focuses on the scenarios with monotonic loading paths, we note that the deformation of an
elastic-viscoplastic solid is a highly nonlinear function of temperature, strain rate, spatial coordinates,
and strain. This real-time stress predictive capability for elastic-viscoplastic materials enjoys special
use in the design and development of energy storage devices (e.g., lithium metal solid-state-batteries).
Specifically, the study conducted here corresponds to analyzing the effect of impact (i.e. crash) and
heat to the solid lithium anode in the solid state batteries.

Notation and Terminology: Vectors and tensors are represented by bold face lower- and upper-case
letters, respectively. The symbol ‘-> denotes single contraction of adjacent indices of two tensors
(ie.a-b=a;bjor A-n = A;n;). The symbol ‘:* denotes double contraction of adjacent indices
of two tensors of rank two or higher (i.e. A : B = A;;B;;j or C: A = Cy;5,1Ay;). The norm of a
second order tensor A is given by ||A|| = VA : A. The symbols V and Div denote the gradient
and the divergence operators, respectively. I denotes the second order identity tensor.

2 Background on the Deformation Behavior of Elastic-viscoplastic Solids

In this section, we describe the nonlinear PDEs that govern the behavior of elastic-viscoplastic solids
under loads at small deformation (see [41]] for further details). In the absence of body and inertial
forces, the strong form of the mechanical equilibrium on a volumetric domain {2 can be expressed as

Divo =0 in (2, with
o-n =1ty on 92y and u = up. on I2p,
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where o and u denote the stress and displacement, respectively, n denote the unit outward normal to
the external boundary 02 of domain {2, and ;. and u;. denote the known traction and displacement
vectors on the Neumann boundary 92y and Dirichlet boundary 0(2p, respectively. The total
strain tensor €, which is the symmetric part of the displacement gradient, can be decomposed
into the sum of elastic and plastic strain components denoted by € and € , respectively, i.e.,
Vu + (Vu)l = 2(e + €?). The stress is given by the Hooke’s law o = C : €°, where C is the
fourth order elasticity tensor. Furthermore, the plastic strain evolution is governed by
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where o/ = o — trace(o’) I denotes the deviatoric part of the stress tensor, A is a pre-exponential
factor, () denotes the activation energy, R is the molar gas constant, § denotes the temperature of the
domain (2, and m € (0, 1] is a strain-rate-sensitivity parameter.

Then, by letting S denote the material strength, its dynamics can be expressed as
S =h(S,o), 3)
with the hardening function h (S, o) defined as [42]],

h(S, o) = [Ho

5 sign (1 - i)] ér,

S
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where Hy and n are two strain-hardening parameters. Furthermore, the saturation value of .S for a

. . . o Q .
given strain rate and temperature, i.e., Ss, is given by Sy = S, (e®eeP /A)™, where S, and a are two
additional strain-hardening parameters.

In this work, we select the material parameters as: A = 4.25 X 104571, @ = 37 kJ/mol, m = 0.15,
S« = 2MPa, Sy = 0.95 MPa, Hy = 10 MPa, a = 2, n = 0.05, E = 7810 MPa, and v = 0.38.
These parameters have been calibrated using the experimental data from direct tension tests on
polycrystalline lithium specimens [42] 43].



3 Proposed Learning Framework

Since plastic strain € and stress o are related by Hooke’s law, the elastic-plastic deformation can
be uniquely characterized by the displacement vector « and any one of the two tensors, € or o,
along with the internal variable S. However, as shown in Appendix [B] a PINN with such choice of
outputs suffers from degraded accuracy and convergence issues. Therefore, we propose a mixed-
variable formulation and use u, o, € and S as the PINN outputs. To model the effect of strain rate
and temperature on the elastic-viscoplastic behavior in two-dimensional solids, we use two separate
PINNSs to predict the output variables at any given location (1, ). To capture strain rate dependence,
the first PINN uses scalar strain I” and strain rate I” as two more additional inputs. The second PINN
uses scalar strain " and temperature 6§ as the additional inputs to capture temperature dependence.
These PINNs are realized via a multilayer perceptron with 9 hidden layers, 120 neurons/layer, and
tanh activation function. In addition, we normalize the data along each component.
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Dataset Generation: To generate the ground truth data, we develop an in-house code using deal.Il
[46] and solve equations (I)-(3) over a 32 x 32 grid for scalar strain values up to I' = 0.04.
Furthermore, for studying the effect of strain rate and temperature on the spatio-temporal evolution
of deformation fields in the body, the ground truth dataset is generated for strain rates I (s7Y):
{1074,1073,1072,10"!} at = 298K and for temperatures 6 (K): {298, 318,358,378} at I’ =
10~ %s~!. The dataset is then randomly split into a 80 : 20 ratio for training and validation purposes.

4 Results & Discussion

Case I: Strain rate de-
pendence First we compare
the predicted values of the
stress, plastic strain, and
displacement fields in the
domain with a test dataset
for I' = 10725571 at
I' = 0.01,0.02, and 0.04
(Figure [I). We can no-
tice that the predicted val-
ues have no visible arti-
facts and are in great agree-
ment with the FEM refer-
ence results. Small val-
ues of the normalized root-
mean-squared-error e (re-
ported underneath the corre-
sponding field plot) further
confirms predictions by the
PINN match the FEM ref-
erence results remarkably
well.

Next, we test the predictive
power of the trained PINN
for values of inputs that
lie outside the training
data range. Specifically,
we calculate the averaged
value of the normalized
root-mean-squared-error £
for 7 different strain rate
values I'(s71) = {10705,
10—.757 10—1.57 10—2.57
1073.5’ 107425, 1074.5}
and multiple strain values
in the range [0,0.08]. We
can readily notice from
Figure [3] that the error £
is very small (=~ 1%) upto
strain I" = 0.04 when
strain rate lies within the
training range. However, in
the region I" € (0.04,0.08],
the error & steadily in-
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Figure 2: Comparison of the results obtained from the PINN model (left
block) and the ground truth reference data (right block) for 7' = 328 K.

creases to = 10%. Also, when the strain rate is outside the training data range, the error £ is large at
all strains implying that the predicted values do not match well with the FEM data.

Case II: Temperature dependence Similar to Case I, we first compare the predicted values of
the stress, plastic strain, and displacement fields in the domain with a test dataset for 7' = 328 K



at I' = 0.01,0.02, and 0.04 (Figure 2). We can notice that the error e has small values and the
predictions match well with the FEM reference results.

Figure [4| shows that the error £ rises to > 10% as 10t
the strains go beyond the training data range. On

the other hand, when the strain is within the train-

ing range, the errors are still < 10% even when the £
temperature is outside the training range.

5 Conclusion
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This work demonstrates the strength of PINNs in Figure 3: Variation of erior & with strain I” for
problems dealing with the evolution of highly nonlin- different strain rates in and outside of the training
ear deformation field in elastic-viscoplastic materials range (I" € [107*,107}]s™*, I" € [0,0.04]).
under monotonous loading. In particular, we trained

two specific PINN models and applied them predicting the spatio-temporally varying deformation
field in elastic-viscoplastic materials at different strain rates, and temperatures, respectively. The pre-
dicted values are in great agreement with the ground truth reference data for the test cases discussed
in this work.

This work highlighted a fundamental challenge in-

volving selection of appropriate model outputs so 10
that the mechanical problem can be faithfully solved

using neural networks. We present and compare two
potential choice of outputs for the model in Appendix £
[B]and present detailed reasoning for preferring one
choice over the other. This work also discusses the
construction of composite loss function, comprising R
the data loss component and physics-based loss com- "70%0 001 002 063 0bs 005 006 007 008
ponents. We also use a novel physics-based strategy "

for selecting the non-dimensional scalar constants Figure 4: Variation of error £ with strain I" for
that weigh each component in the physics-based loss  different temperatures in and outside of the training
function without any added computational complex- data range (0 € [298,378]K, I" € [0, 0.04]).

ity. Moreover, a novel loss criterion for residual calcu-

lation corresponding to plastic strain rate equation is proposed to alleviate issues related to unbalanced
back-propagated (exploding) gradients during model training.

The real-time stress field prediction in such highly nonlinear mechanical system paves the way for
many new applications, such as design and optimization of lithium ion batteries or inverse modeling
problems which were previously computationally intractable.

Broader Impact

We introduce a learning framework for predicting nonlinear spatio-temporal variation of deformation
inside elastic-viscoplastic materials under various operating conditions (e.g., temperature, strain
rate, etc.). This is an important problem in multiple engineering applications. For example, the
outcome of this work can be used to carry out fast (near real-time) simulation of the behavior of a
solid L7 anode under varying loading conditions. This, in turn, can improve the process of design,
development, and operation of solid-state lithium-metal batteries. However, our proposed framework
is still a conceptual proposal and has a very low (around 2) Technology Readiness Level (TRL) [47].
We are yet to fully understand its limitations and failure scenarios that can significantly influence its
real-world adoption.
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Appendix

A Construction of the Physics-informed Loss Function

The development of a PINN based approach to predict the solution of a system of nonlinear PDEs can
be viewed as an optimization problem which involves solving for (W, b) that minimizes network’s
total loss. The composite loss £ comprises the summation of supervised data loss L4, and the
physics-based loss Lppy i.e. £ = Lygtq + Lphy. The non-dimensional supervised data 10ss Lgqtq
measures the discrepancy between the normalized ground truth data T and the neural network outputs
Y and is given by

1 Ndata Nout . .
ﬁdata — N Z Z HK(J) - T;(j)|‘2a (4)
data J=1 i=1

where Ng,¢, denotes the number of ground truth samples and N,,,; is the number of scalar output
variables.

To evaluate the physics-based loss £,y,,, we sample a collection of randomly distributed collocation
points discretizing the normalized input space. The whole set of collocation points is denoted
by P = {Pw,P¢.p, P N, Pn} where P, denotes the collocation points in the entire input space
[-1,1] Nin P¢,p and P¢ v denote the subset of P that intersects with the 042 and 92, respectively.
P,, denotes the subset of P that intersects with I" = 0 (or¢ = 0).

To this end, we construct the physics-based loss L, with seven components i) PDE loss Lpqe,
ii) Dirichlet boundary condition loss £ pp., iii) Neumann boundary condition loss £y, i) initial
condition loss L;., v) constitutive loss L. corresponding to the satisfaction of constitutive law, vi)
plastic strain rate loss £, corresponding to the equation governing the evolution of plastic strain,
and vii) strength loss £, enforcing the material strength evolution equation. Each component of £y,
is individually calculated as follows:

Lpge = ||Divellp,

Lppe = |Ju—wpelfp, ,

Lve =lo-n—ticlfp_,
Lic =Y - Lollp, Q)
Le=|lo—C:(Vu—e)f
Ly =S —h(S,0)|?

. 3 Ao’ —Q 3HU_/H 1/m
Lpsr = MMSE (€ =/ 3™ ™ (\/;T)

In the above, Z denotes the initial state of the system i.e. outputs at ¢ = 0. The loss criterion MMSE
is discussed in detail below. Ly, is then given as the weighted sum of these loss components

Lphy = )\lcpde + >\2£ic + )\Sﬁps’r + )\4‘68 + )\5‘CC + )\GEDbc + >\7£Nbc (6)

where \;, (i = 1...6) are the scalar weights. Please note that each of these loss components are
computed using automatic differentiation.

Next, we briefly discuss the two main difficulties that hinder the training of DNNs for elastic-
viscoplastic modeling applications.
(I) The power law dependence of the equivalent plastic strain rate éP leads to large values of L? norm
of L, loss (> O(10'®)) which causes unstable imbalance in the magnitude of the back-propagated
gradients during the training when using common loss criterions such as Mean-Squared-Error (MSE).
Therefore, in this work, we use a novel Modified Mean Squared Error (MMSE) loss criterion to
reduce the numerical stiffness associated with equation (2)) and allow stable gradients to be used
during the training

MMSE(A) = logio(1 + [|Al)). ™

In the above, A denotes the residual value. The loss criterion is equivalent to the Mean Squared Error
(MSE) criterion when the discrepancy between the residual values are small.
(IT) The relative coefficients A; (¢ = 1..6) for all the losses comprising £,,, play an important role in



mitigating the gradient pathology issue during the training [48]]. There are competing effects between
these different loss components which can lead to convergence issues during the minimization of the
composite loss £ (see [22] Sec. 4.1]). While the recent advances in mitigating gradient pathologies
[48]|49] might improve predictive accuracy, they introduce additional computational and memory
overhead because of the calculation of an adaptive factor for each loss component. In this work, we
devise a simple strategy, with no added computational complexity, to evaluate the coefficients which
remain constant during the course of training. The strategy is outlined as follows:

* The Dirichlet boundary condition and initial condition losses (£;. and £ py.) are calculated
in a normalized manner (scaled between [—1, 1]). So, we take Ay = Ag = 1.

* The other loss components are nondimensionalized using appropriate scales as shown in
Table |1} . is a constant chosen to scale quantities with units of stress. Based on the
observation that stress is often nondimensionalized by Shear Modulus p in conventional
numerical methods, we choose 1. = 0.01p to achieve tight tolerance on the equilibrium
equation and traction boundary conditions.

* Since material strength .S and p differ by orders of magnitude, S is nondimensionalized by
So.

* We nondimensionalize time by using strain rate I', since I" sets the time scale for the
problem.

* The length is nondimensionalized by the characteristic length of the domain, chosen to be
H in this work.

Loss component Scaling
2
ﬁpde /\1 = ,ﬁ 2
Eic )\2 =1
Epsr )\3 = #
1

£s M= G Ry
Lc )\5 = /Liz
Lppe Ao =1
['Nbc /\7 = HiQ

Table 1: Scaling constants for different physics-based loss components.
B The Rationale Governing the Selection of Output Variables

This section compares the results obtained from two PINN models - (a) Model I with displacement,
stress, plastic strain, and strength (u, o, €P, S) as outputs; and (b) Model II with displacement, plastic
strain, and stress (u, €P, S) as outputs.

For Model II, the physics-based loss L, is obtained from the set of equations (5) with the following
important changes: i) The stress is directly calculated from the displacements and plastic strains
which are outputs of the neural network, i.e. o = C : (Vu — €P). This implicitly leads to satisfaction
of constitutive law so the loss component L. is ignored. ii) The data loss Lz, is also modified to
account for the current model outputs.

The study conducted here corresponds to Case 1. i.e., understanding the effect of strain rate on the
spatio-temporal evolution of deformation in an elastic-viscoplastic material. The learning rate for
Model II is taken to be 10~* while keeping the collocation points and all other hyperparameters the
same for both the architectures as described in Section ]

The convergence of the training loss for both the models is presented in Fig.[5] It can be seen that
loss reaches a stagnation value of ~1.9 for model II at around 3000 epochs which is approximately
hundred times larger than the converged loss value obtained for model I. We can conclude that model
I does not suffer from any such degraded accuracy or convergence issue as indicated by Figure[5] This
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Figure 5: Comparison of training history for Model I and II differing only in the model outputs.

result is an extension of the similar observation for the purely linear elastic calculations presented in
[50] to the general elastic-plastic modeling case discussed here.

While the exact reasons for such a behavior are still unclear, we highlight the main differences between
the two models. First, the stress calculated in model II is sensitive to the noise in the gradients of .
Second, we note that highest order of the spatial derivatives occurring in the composite loss function
is one and two for models I and II, respectively. Moreover, in elastic/elastic-plastic deformations the
order of displacement field magnitudes in the x; and x5 direction can be vastly different because
of the loading setup and Poisson’s effect. We believe that these factors combine together to give
rise to convergence issue and degraded accuracy when using model II. The use of improved training
technique [51]], which also approximates target derivatives along with target values, may alleviate
these issues for model II but that may involve added computational complexity and remains the
subject of future investigation.

C Ablation Studies on the Effect of Network Depth and Width

First, we perform a (non-exhaustive) parametric study to identify a suitable number of hidden layers
N, and number of neurons per layer N,, needed to model the deformation field with an acceptable
accuracy. We train 6 neural networks with the following architectures: i) 5 x 100, ii) 6 x 100, iii)

102 5 x 100
6 x 100
\ —= 6 x 120
107 4 -=- 7 x 120
—— 8 x 120
£ 107 4 s 80 120
101 4
102 4
prrgrrpry
J T T L] T T
0 1600 3200 4800 6400 8000

Epoch
Figure 6: Comparison of the composite loss £ associated with different PINN architectures (N; x Ny,) for
Case I. N; and N,, denotes the number of layers and number of nodels per layer, repectively.

6 x 120, iv) 7 x 120, v) 8 x 120, and vi) 9 x 120. Figure[§| presents the training history for each
of these architectures. As expected, we see a merit in increasing both N, and NN initially but the
final value of the composite loss stops improving when the number of layers are increased from 7
to 9 keeping N,, fixed at 120. These three network architectures (7 x 120, 8 x 120, and 9 x 120)
reduce the nondimensional composite loss by almost five orders of magnitude (from 102 to ~1073).
The values of the corresponding validation losses are monitored to notice any overfitting issues. We
use the neural network with architecture 9 x 120 for generating results associated with Case I in
Section [l
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Similar to Case I, we first conduct a study to gain insight into the effect of N; and IV,, on the composite
loss £ and train the six aforementioned neural network architectures (i.e., 5 x 100, 6 x 100, 6 x 120,
7 % 120, 8 x 120, 9 x 120). Figure[7] presents the training history for each of these architectures
which shows similar trend as in Figure@ Therefore, we use the neural network with architecture
9 x 120 for generating results associated with Case II in Section 4]

L T T T T T
0 1600 3200 4800 6400 8000
Epoch

Figure 7: Comparison of the composite loss £ associated with different PINN architectures (N; x Ny,) for
Case II.
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