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Abstract

In this work we explore the possibility of introducing biases in physical parameter
inference models from adversarial-type attacks. In particular, we inject small
amplitude systematics into an mixture density networks tasked with inferring
cosmological parameters from observed data. The systematics are constructed
analogously to white-box adversarial attacks. We find that the analysis network
can be tricked into spurious detection of new physics in cases where standard cos-
mological estimators would be insensitive. This calls into question the robustness
of such networks and their utility for reliably detecting new physics.

1 Introduction

Within the physical sciences, there has been an explosion of interest in direct parameter inference
models, i.e. models which seek to map directly from observed data to underlying physical parameters
of interest [14, 11, 6, 16, 15]. Many of these papers make strong claims of superiority of these direct
methods compared to standard analysis based on field-level maximum likelihood methods or classical
summary statistics. However, the topic of robustness of these models has not been explored rigorously
in the literature. Unknown systematics in experiments that are not included in the training data can,
and likely will, significantly affect the inferred parameters in ways that are not apparent to users
accustomed to standard analysis methods. The results from direct inference techniques may then be
misinterpreted as detection of new physics.

In this work we present one particularly strong pathological example inspired by recent work aiming
to map from observed cosmological density fields to underlying physical parameters [14, 17, 16, 15].
Standard power-spectra based methods are known to be sub-optimal because of the non-linear
evolution of cosmological density due to gravitational evolution, which forces information from
two-point statistics into higher order modes. However, these methods are less sensitive to anomalous
noise patterns or systematics because they average over the cosmological fields. Neural networks,
on the other hand, particularly those utilizing convolutional architectures, can extract non-linear
information beyond what is possible with existing classical summary statistics [8]. We wonder how
robustly they can perform this extraction.

As shown in [7], adversarial attacks on neural networks can happen in the “physical world", i.e. in
natural images processed via a standard camera, without the need to exactly manipulate individual
pixels. In the context of the physical sciences this leads to the question whether conceivable physical
systematics, not just specifically crafted pathologies, could result in effective adversarial patterns.

In this work, we construct a parameter inference network trained on two dimensional projected dark
matter fields. We then construct adversarial attacks via the methods discussed in [7]. We show
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Figure 1: Overview of our workflow to generate and evaluate adversarial-type patterns. From our
original image and trained model we can generate an adversarial attack, shown in red, as well as an
unknown systematic example, shown in green. Both are added to our original image, leading to nearly
imperceptible (< 0.1%) changes to a powerspectrum analysis, however both result in significant
shifts to the model’s inferred cosmological values at a 2σ level.

that there are classes of reasonable systematics that could exist below the noise level of existing
experiments, and which existing analysis techniques are insensitive to.

2 Methodology

2.1 Simulated training data

To simulate idealized astronomical data, we run 10000 small box, particle mesh simulations spanning
cosmological parameters ΩM ∈ [0.05, 0.55] and σ8 ∈ [0.5, 1.01]. For simplicity we use a uniform
grid of values with spacing of 0.05 for each parameter value. We use FlowPM [10], a Tensorflow [1]
GPU-based implementation of FastPM [4]. Other that ΩM and σ8, we hold all other cosmological
parameters fixed at the Planck 2015 Best Fit Values [12]. For our simulations we use a box size
of 128 h−1Mpc side-length with particle resolution of 643. These are very coarse simulations by
cosmological standards, but are able to capture key differences in the growth of structure caused
from variations of the fundamental physics parameters. We use a 70-30 split for training and testing
respectively.

2.2 Network architecture

For our model architecture to predict fundamental physics parameters, we will use a convolutional neu-
ral network, whose outputs are flattened and passed to a fully-connected mixture density network[2].
We will aim to predict the possible distributions of our target cosmological parameters (Ωm and
σ8) by predicting the means, µ, standard deviations, σ, and relative weights, π of various Gaussian
components, i.e. we assuming a form

p(x|y) =
m∑
i

πiϕ(y|θ⃗i), (1)

where ϕ are Gaussian distributions defined by parameters θ⃗i = (µ⃗i, σ⃗i). For this analysis we set m =
1, i.e. one Gaussian component, although we can easily generalize it to many mixture components.
We assume a diagonal covariance for our parameters due to ease of optimization. We make use of the
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symmetry of our simulated physical system by performing random rotations and translations during
training to increase our networks robustness and effective training size. Training was performed on a
Tesla V100-PCIE GPU with 32 GB of memory. For more information about our network architecture
see our github repository here: https://github.com/bhorowitz/adversarial-cosmology.

2.3 Adversarial attack

We present two families of adversarial attacks on our network. The first is the “worst case”, repre-
senting the smallest possible permutation resulting in the most significant change in our inferred
cosmological parameters. To achieve this we use the Basic Iterative Method (BIM) [7], an extension
of the Fast Gradient Sign Method [5]. This is an example of white-box attack where the attacker
knows the full likelihood function, J(θ, x, y), with θ being the model’s (trained) parameters, x the
input image and y the simulated true parameters, respectively. The BIM iteration is given by

xt+1 = Clip(xt + α× Sign(∇xJ(θ, xt, y))), (2)

where Clip keeps all values below a value of 1. We run this process for ten steps with α value of 0.01.
This method will construct the smallest change to the original image that results in the maximum
effect on the inferred parameters.

2.4 Unknown Systematic attack

For a more realistic example we examine a perturbation which scales as a non-linear function of
observed density field. This could, for example, reflect an incorrect calibration of a detector or some
unforeseen small-scale hydrodynamical effect in galaxy clusters. We parameterize this model as

xsys = x+ β × 1

1 + eax+b
(3)

To find an “adversarial" example with this property we use a similar method as BIM but instead of
studying the gradient with respect to the underlying field we find it with respect to the parameters of
Equation 3. Tuning the parameters by hand, we find a = 0.25 and b = −15.0 provides a significant
shift to the trained network’s accuracy with minimal visual change. We choose β such that the total
mean squared change induced by our unknown systematic is similar in amplitude to our adversarial
attack, finding β = 3.0.

3 Results

We train a model as described in Section 2.2 using the simulated training data described in 2.1.
We stop training after 1000 epochs (approximately one hour), finding suitable accuracy on our test
data-set is achieved with minimal marginal improvement in overall loss per additional epoch. We
then use the methods described in Sections 2.3 and 2.4 to generate adversarial-type patterns which
we add to our test images. We scale our systematic pattern to match the overall change in pixel value
of the white-box adversarial pattern. We show this workflow in Figure 1.

For comparison, we also calculate the power spectra of the original, adversarial, and systematically
altered fields. This is the most common way to extract cosmological information from observed
density field data. We find that the adversarial-type patterns generate changes to the power spectra
well below the intrinsic cosmological variability (grey bands in Figure 1), i.e. this method is robust to
small scale unknown systematics. Meanwhile our model is, by construction, highly sensitive to this
attack and results in significant nonphysical parameter shifts. We show additional examples of this
procedure in Figure 2.

Beyond qualitative comparisons, we can compare the resulting distributions based on the average
Kullback-Leibler (KL) Divergence. For our test sample, we calculate the KL divergence from the
perturbed distribution to the unperturbed distribution (note that the KL Divergence is not symmetric).
For our test sample, we find a mean KL divergence of 1.05 (0.98) for the distances adversarial
(systematic) attack and the unperturbed example. Meanwhile, the mean symmetrized KL divergence
between the adversarial and systematic attacks is 0.67. This indicates our resulting perturbed
distributions are on significantly offset from the original distribution on average, while also being
similar to each other.
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Figure 2: Shown are three random examples from our test data-set, passed through our mixture
density network, showing the similarities between our adversarial attack and the mock systematic.
While on average the mock systematic results in less of an offset, it still results in a significant bias
that could cause a spurious detection. The green circle indicates the simulated truth.

4 Discussion

In this work we have constructed a direct parameter inference model for cosmological density fields,
which is closely related to those discussed in the literature [14, 17, 16, 15]. We have shown that these
types of neural network estimators are susceptible to adversarial attacks in ways traditional statistics
are not. In addition, we have shown that there exists a space of reasonable physical systematics,
which, while imperceptible to existing methods, lead to similar biases in cosmological parameters as
white-box adversarial attacks. These systematics are closer in distribution, as measured by the KL
divergence, to adversarial attacks than to the unperturbed distribution.

We conclude from these tests that there is reason for skepticism about cosmological results drawn from
direct parameter inference models. A key feature of these models is that they derive cosmological
information from small-scale features in the density fields. Great care is needed to ensure the
robustness of such models to all conceivable new systematics, not just to those the community
has investigated in the context of traditional analysis methods. Even if doing so leads to reduced
constraining power [9, 13]. Going forward, we believe it should be standard practice to test parameter
inference models with adversarial examples, or, even better, to inject adversarial examples during
training to increase the robustness of the final models.

Limitations of work: In this study, we examined attacks on only one specific network architecture
in one context. It is possible other networks would be more or less conducive to this method of
attack. For example, neural flow-based models [3] have significantly fewer parameters which could
make them more robust to adversarial-type systematics. We also did not explicitly explore examples
of adversarial-type attacks to which the power spectrum would be sensitive but neural network
models would be not. However, the sensitivity of power spectrum methods is well studied in existing
astrophysics literature.

Impact Statement: This work shows potential limitations of a large (and growing) body of work
found throughout the physical sciences which attempts to directly map from observed data to
underlying physical parameters. We believe our work should encourages authors of such works to
explore the robustness of their models, including potentially incorporating adversarial training. It
also elucidates this issue for the broader scientific community to encourage well-founded skepticism
on any claimed physical discoveries based on this class of models.
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