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Abstract

Inferring accurate posteriors for high-dimensional representations of the bright-
ness of gravitationally-lensed sources is a major challenge, in part due to the
difficulties of accurately quantifying the priors. Here, we report the use of a
score-based model to encode the prior for the inference of undistorted images of
background galaxies. This model is trained on a set of high-resolution images of
undistorted galaxies. By adding the likelihood score to the prior score and using
a reverse-time stochastic differential equation solver, we obtain samples from the
posterior. Our method produces independent posterior samples and models the
data almost down to the noise level. We show how the balance between the likeli-
hood and the prior meet our expectations in an experiment with out-of-distribution
data.

1 Introduction

Strong gravitational lensing – extreme distortions in the images of distant sources by the gravity of
foreground lensing galaxies – is a powerful tool that can be used to probe the fundamental nature
of dark matter, infer the expansion rate of the universe, and study the birth and evolution of nascent
galaxies [1]. Inferring the spatial distribution of mass in the foreground lens and the spatial distri-
bution of surface brightness in the background source is an essential component of achieving these
scientific goals.

In this work, we ask the question: given a noisy image of a distorted source and the distribution
of mass in the lensing galaxy, how can we infer the spatial distribution of surface brightness in the
background source? The goal is to sample the posterior p(x | y, κ), where x are the variables
representing the surface brightness distribution in the background source, y is the observed data,
and κ are the variables representing the spatial distribution of mass in the lens.

In noisy and low-resolution data, the source can often be well-described by low-dimensional rep-
resentations like the Sérsic profile [2, 3]. Through their functional forms, these representations
implicitly impose a strong prior on the surface brightness. Higher-quality data, however, reveal rich
and complex morphologies, which demand more expressive source models, such as a set of pixels
[4, 5], allowing arbitrarily-complex representations at a finite resolution. These methods require
priors that limit x to physically-plausible configurations to avoid unphysical source reconstructions
caused by overfitting to noise. Such priors have typically taken heuristic and simplistic forms to
facilitate calculations, such as gradient or curvature penalties [5]. Other expressive source models
apply similar methods on adaptive grids [6, 7], decompose the source as a linear combination of
shapelets [8, 9] or wavelets [10], or model the source as an approximate Gaussian process [11].
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However, these priors are inaccurate since sampling from them does not yield galaxy-like images,
which can bias lensing inference.

Recent work has explored the use of machine learning to create better source brightness priors for
lensing inference, such as variational autoencoders [12], recurrent inference machines [13–15], and
continuous neural fields [16]. These methods respectively have trouble accurately representing the
prior over galaxy images, only produce maximum a posteriori parameter estimates, and only im-
plicitly define a prior through the choice of a neural network architecture. Also, denoising diffusion
probabilistic models [17, 18] have been applied to learn priors over galaxies outside the context of
lensing inference [19].

In this work we use score-based modeling, formulated in terms of stochastic differential equations
(SDEs), to learn a highly-accurate prior over the source surface brightness for lensing analysis. In
combination with a likelihood, this allows us to produce source posterior samples of remarkably
high quality using SDE solvers. A similar approach was adopted in Remy et al. [20] to produce
samples from the posterior of convergence maps from weak lensing data. These samples enable us
to assess the significance of reconstructed source features. Our experiments show how our prior is
balanced against the likelihood to enforce that reconstructions to look like training set galaxies in
the low-signal-to-noise (SNR) regime. This represents a significant step towards accurate inference
in high-dimensional spaces.

2 Inference of underconstrained variables with score-based priors

The data-generating process of strongly-lensed images of background galaxies can be described by
the linear equation

y = Ax + η , (1)
where x ∈ Rn contains pixel intensities of the undistorted background source image, A ∈ Rm×n
encodes the lensing distortions (and thus a function of κ), interpolation over x and instrumental
effects such as a point spread function, and η ∈ Rm is additive instrumental noise, here assumed to
be distributed asN (0, σ2

N1). Since we consider the case where κ is known, in our notation we drop
the dependence on A (or κ) and treat it as a known constant. The likelihood for the data given the
source image is therefore p(y | x) = N (y | Ax, σ2

N1).

Our aim is to sample the posterior p(x | y), which, by Bayes’ theorem, is proportional to the product
between the likelihood p(y | x) and a prior p(x). Applying the logarithm thus gives

log p(x | y) = log p(y | x) + log p(x)− log p(y) . (2)

The prior effectively gives the probability that any image x looks like a galaxy in the absence of
a lensed observation y. Recent advances in generative modeling have shown that the score of the
prior, ∇x log p(x), can be accurately learned from training data and sampled from using score-
based modeling [17, 18, 21, 22]. We now summarize how to train a model sθ(x) to approximate
∇x log p(x) using score matching and our posterior sampling procedure.

2.1 Score matching

Score matching [23] is the task of training a model, sθ(x) : Rn → Rn, to match the score of a
probability distribution, ∇x log p(x). We use denoising score matching (DSM) [21, 24], which lets
us learn an implicit distribution by training a network sθ(x) to remove Gaussian noise added to
i.i.d. samples from that distribution. We follow previous works [22, 25, 26] in averaging the DSM
loss over various scales σ(t), here indexed by a continuous time variable t ∈ [0, 1], and conditioning
the score model on this time index, sθ(x, t) = εθ(x, t)/σ(t), where εθ is the neural network. The
loss is obtained by sampling uniformly over t, perturbing a training sample by adding noise of
the corresponding scale, noted by σ(t)z with z ∼ N (0,1), and computing the Fisher divergence
between the model and the kernel of the perturbation:

Lθ = Et∼U(0,1)Ex∼DEz∼N (0,1)

[
‖εθ (x + σ(t) z, t) + z‖22

]
. (3)

This loss is designed to address the manifold hypothesis [24, 25] and is related to denoising diffusion
approaches that rely on a variational formulation [17, 18, 25, 27–29] to generate data with a fixed
number of steps, unlike MCMC approaches.
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Figure 1: Source and observation reconstruction using 8000 steps of the Euler-Maruyama solver.
The first column shows the true source image and the observation, labeled with the noise level σN .
The other columns, from left to right, show two samples from the posterior, the mean and standard
deviation of 320 posterior samples, and the SNR of the residuals in the source plane (first row) and
lens plane (second row). The residuals in the source plane are shown for illustrative purposes only
since the accuracy with which we expect the source to be reconstructed is position-dependent.

More specifically, DSM can be phrased in terms of SDEs [22], where training data is evolved into
noise under a variance-exploding diffusion process dx = g(t) dw. Here g(t) is called the diffusion
coefficient, w is a Wiener process and t ∈ [0, 1]. The score-based model (SBM) learned using the
DSM loss approximates the score ∇x log pt(x) induced by this SDE. The distribution pt(x) can be
understood as the marginal distribution of trajectories from the SDE evolved up to time t. Samples
from the distribution p(x) = p0(x) can then be generated by substituting this learned score into the
corresponding reverse-time SDE [30] dx = −g2(t)∇x log pt(x)dt + g(t) dw̄ and solving it with
the distribution initialized to a wide Gaussian, p1(x) = N (x|0, σmax). Here w̄ is a reverse-time
Wiener process and dt is now an infinitesimal negative timestep.

2.2 Sampling from the posterior

Sampling from the posterior p(x | y) requires changing the t = 0 boundary condition of the forward
SDE from the prior p(x) to the posterior p(x | y). This modifies the reverse-time SDE to read as
[22]

dx = −g2(t)∇x log pt(x | y)dt+ g(t) dw̄ . (4)

Solving this equation until t = 0 then yields independent samples from p(x | y). We can further
apply Bayes’ rule to simplify the score in the above equation as

∇x log pt(x | y) = ∇x log pt(x) + ∇x log pt(y | x) . (5)

The first term in this sum is modeled by our SBM, sθ(xt, t). We approximate the second using the
convolved likelihood, pt(y | x) ≈ N (y | Ax, (σ2

N +σ2(t))1). Intuitively, this can be understood as
arising from the convolution of the Gaussian diffusion N (0, σ2(t)1) with the Gaussian likelihood
p(y | x). We derive the convolved likelihood in more detail in appendix A.

With this machinery in place, we can apply the Euler-Maruyama solver (see e.g. [31]) to generate
posterior samples of x. The quality of the resulting samples is controlled by the number of time
discretizations, N . We choose N = 8000 based on Technique 2 of Song and Ermon [32]’s work,
which we discuss in more detail in appendix B. This theory ensures that the samples from each
iteration of the solver do not stray far from the high-density region of pt(x). The noise schedule
in the DSM loss (or equivalently the diffusion coefficient in the forward SDE) employed in this
work corresponds to the variance-exploding SDE (VE SDE) from Song et al. [22]. This amounts to
setting g(t) =

√
dσ2(t)/dt with σ(t) = σmin (σmax/σmin)

t. We explain how σmin/max is selected
in section 3.
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Figure 2: Application of the method to a lensing system with a highly out-of-distribution source.
The ground truth is given in the leftmost panel. Other panels show increasingly noisy data (lower
row) and a sample from their corresponding source posterior (upper row). As the likelihood becomes
less informative, the prior dominates, making the sources increasingly look like galaxies.

3 Results and conclusions

To test our method, we trained our SBM on the PROBES dataset [33, 34], a high-quality sample of
2059 galaxies with 256× 256 pixels. We used the data normalization scheme described in sec. 3.1
of Smith et al. [19]. For the SDE parameters we set σmax = 263.4 (our estimation of the largest
Euclidean distance between any two pairs in our training set [32]) and chose σmin = 10−4, roughly
the scale of the smallest details in the training images. Our network is the reference PyTorch [35]
implementation of NCSN++ architecture from Song et al. [22].1 Training was carried out on four
NVIDIA V100 GPUs, with a batch size of 16, for a total of ∼ 350 000 optimization steps (∼ 70
hours wall-time). The results shown in fig. 1 are in the g band (though in principle our framework
can be extended to multiband data). The lens deflections are modeled using a singular isothermal
ellipsoid (SIE) (see e.g. [36]) plus external shear. We produce noise-free images at 256 × 256
resolution by ray-tracing and bilinearly-interpolating the source over the deflected coordinates. We
then pixelate at 128× 128 resolution with average pooling. For sampling, we use 80 V100 GPUs in
parallel, yielding 320 samples in less than one hour (wall-time).

In fig. 1 we apply our method to a simulated lens from our test set. We show two posterior samples
to give a sense of their variations, along with the mean and standard deviation calculated using 320
samples; see fig. 3 for more samples. We find individual reconstructions and their mean match the
observation almost down to the noise level. In the source plane, the bright core, spiral arms, and
small but sharp clumps are well-reconstructed. Other small-scale features differ between the samples
and have larger reconstruction uncertainties. The map of the standard deviation of the samples
clearly shows fewer variations close to the diamond caustic, which matches our expectations, since
these regions are highly magnified and thus better constrained. We find some posterior samples
have bright peripheral spots, showing the model has learned they are present in the prior and that the
approximation in our posterior sampling procedure does not suppress them.

Next, we apply our method to reconstructing an extremely out-of-distribution source.2 The results
are shown in fig. 2. For low-noise observations, where the likelihood is highly informative, the
model yields excellent reconstructions, capturing even small-scale spots in the source. This demon-
strates that the model is qualitatively robust to distributional shifts when the likelihood is highly
informative. With increasing noise levels the likelihood becomes less informative and the recon-
structions increasingly resemble samples from the prior. As expected, the highly magnified regions
in the center of the image (near the caustics) are better constrained.

1 Available at https://github.com/yang-song/score_sde_pytorch/, released under Apache Li-
cense Version 2.0.

2 Our source was generated with DALL-E 2 [37] using the prompt “A galaxy in the shape of the number 7
on a dark background”.
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In conclusion, we combined a score-based model trained on images of real galaxies with a differ-
entiable lensing likelihood to sample posteriors of pixelated sources in strong lenses. Our posterior
samples have remarkably high fidelity to the ground truth, and our reconstructed observations are
consistent with the true ones almost down to the noise level. The independent samples generated
from the posterior allow us to assess the confidence of any features in the reconstructions (e.g.,
the existence of a spiral arm) by examining their variations in them. Through our experiment with
out-of-distribution sources, we showed that our model can recover these sources when high-quality
data make the likelihood informative and can converge to the learned prior when the likelihood is
not constraining. We believe this inference approach will help enable new scientific analysis using
existing and upcoming strong lensing observations.

Broader Impact

The focus of this work is the rigorous estimation of uncertainties (posterior sampling) in high-
dimensional spaces. The work can have an important cross-disciplinary impact on the application
of machine learning in other natural sciences where accurate estimation of uncertainties is crucial.
Given the striking nature of gravitational lensing images, we also believe that there is potential for a
positive impact that will inspire broader interest in astrophysics. While we do not anticipate our work
could have direct negative consequences, it could conceivably be applied to ethically-questionable
inference problems. Additionally, users of such methods must be aware of their approximations and
biases when applying them to scientific problems.
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A The convolved likelihood

In this appendix, we explain the origin of the convolved likelihood approximation to log pt(y | xt)
and demonstrate its regime of validity in the context of strong lensing source reconstruction. Let
the Markov chain of the forward VE SDE be denoted as {Xt}t∈[0,1]. Our goal is to find a tractable
expression for the marginal posterior pt(xt | y) at time t, the score of which is required to solve
our reverse-time SDE. By construction of the VE SDE, the random variable Xt = X0 + Zt can be
expressed as the sum of the random variable X0, sampled from the posterior x0 ∼ p(x0 | y), and
Zt, a noise perturbation zt ∼ N (0,Σt), where Σt := σ2(t)1. This implies the marginal posterior
we seek can be written as the convolution

pt(xt | y) =

∫
dx0 p(x0 | y) N (xt | x0,Σt) . (6)

We can expand this expression by applying Bayes’ rule to the first term in the integrand:

pt(xt | y) =
1

p(y)

∫
dx0 p(y | x0) p(x0) N (xt | x0,Σt) (7)

=
1

p(y)

∫
dx0N (y | Ax0,Σy) p(x0) N (xt | x0,Σt) , (8)

where we used the form of the lensing data generation process (eq. (1)) to obtain the second line,
with Σy := σ2

N1. Given a sufficiently broad prior p(x0), the integral approximately factorizes into
the product of the prior and likelihood convolved with the noise perturbation:

pt(xt | y) ≈ 1

p(y)

[∫
dx0N (y | Ax0,Σy) N (xt | x0,Σt)

] [∫
dx0 p(x0) N (xt | x0,Σt)

]
(9)

=
1

p(y)

[∫
dx0N (y | Ax0,Σy) N (xt | x0,Σt)

]
pt(xt) (10)

=
N (y | Axt,Σy +AΣtA

T ) pt(xt)

p(y)
, (11)

where we applied the definition of pt(xt) to obtain the second equation and analytically evaluated
the remaining integral (see e.g. sec. 3.3.1 of Murphy [45] for the required identity). By expanding
the left-hand side of this equation with Bayes’ rule, we obtain the convolved likelihood,

pt(y | xt) ≈ N (y | Axt,Σy +AΣtA
T ) . (12)

We can examine the accuracy of the convolved likelihood factorization by considering the case
where p(x0) = N (x0 | 0,Σx0). In this case the integral in eq. (8) giving the marginal posterior can
be evaluated analytically:

pt(xt | y) =
1

p(y)

∫
dx0 p(y | x0) p(x0) p(xt | x0) (13)

=
1

p(y)

∫
dx0N (y | Ax0,Σy) N (x0 | 0,Σx0) N (xt | x0,Σt) (14)

=
N (xt | 0,Σx0

+ Σt)

p(y)

∫
dx0N (y | Ax0,Σy) N (x0 |mc,Σc) (15)

=
N (xt | 0,Σx0 + Σt) N (y | Amc,Σy +AΣcA

T )

p(y)
, (16)

where we obtained eq. (16) by simplifying the product of the last two terms in the integrand using
eq. 371 from Petersen et al. [46] and defined

Σc := (Σ−1
x0

+ Σ−1
t )−1 , mc := ΣcΣ

−1
t xt .

On the other hand, evaluating the integral pt(x) in our convolved likelihood factorization eq. (11)
yields

pt(xt | y) ≈ N (xt | 0,Σx0 + Σt) N (y | Axt,Σy +AΣtA
T )

p(y)
. (17)
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Thus, our approximation for the convolved likelihood holds if
N (y | Amc,Σy +AΣcA

T ) ≈ N (y | Axt,Σy +AΣtA
T ). Such an approximation is valid

when the prior p(x0) is broad compared to the likelihood. To test this, we expand Σc in a Neumann
series around Σt:

Σc = Σt − ΣtΣ
−1
x0

Σt +O(‖Σt(Σ−1
x0

Σt)
2‖2) , (18)

where ‖·‖2 is the spectral norm of a matrix, i.e. the magnitude of the largest eigenvalues of the
covariance matrix. Our approximation holds when the second and higher order terms are negligible
compared to the leading term in the expansion. We estimated the eigenvalues of Σx0 by fitting a
Gaussian random field on the PROBES dataset. Our estimate of the largest eigenvalue of Σx0 is
comparable to σ2

max, which means that our approximation might not hold for t . 1, but that it will
be valid for most of the sampling procedure 0 ≤ t < 1. Moreover, it is worth noting that in the limit
t → 0, the approximation in eq. (12) becomes exact, and so the approximate SDE we are solving
respects the same boundary condition as the exact SDE.

A final simplification we apply to our convolved likelihood to avoid an expensive matrix inversion
at every step while solving the reverse-time SDE is to assume AAT ≈ 1. Without this assumption,
evaluating the convolved likelihood would require inverting the matrix Σy + AΣtA

T , the size of
which is the number of pixels in the image squared. With this assumption, on the other hand, the
covariance matrix of the convolved likelihood simplifies to Σy + Σt ∝ 1, which is trivial to invert.
By examining AAT for different lens configurations, we find this is a reasonable approximation. In
our checks, only a small fraction of off-diagonal elements are nonzero, and all diagonal elements
are guaranteed to be no greater than 1 since lensing conserves surface brightness.3 Consequentially,
the final convolved likelihood we use for sampling is

pt(y | xt) ≈ N (y | Axt,Σy + Σt) . (19)

B Euler-Maruyama discretization

The Euler-Maruyama discretization of the reverse-time SDE is

xt+∆t = xt − g2(t)∇xt log pt(xt | y)∆t+ g(t)zt
√
−∆t (20)

with zt ∼ N (0,1), ∆t = −1/N andN the number of discretisations of the time index t ∈ [0, 1]. In
practice, we can choose N to satisfy technique 2 of Song and Ermon [32], such that the discretized
noise schedule used in our work σ(t) = (σmax/σmin)tσmin is now a geometric progression with a
ratio

γ =
σ(t)

σ(t+ ∆t)
=

(
σmax

σmin

)1/N

. (21)

The ratio γ > 1 should be close enough to 1 so that a sample from pt(xt) should at least belong
to the 3σ density region of pt+∆t(xt). In such a situation, a sample from pt(xt) will have some
probability p(N) of belonging to the 3σ density region of pt+∆t(xt), meaning it is a likely sample
even after a transition to the density distribution at lower temperature.

We follow Song and Ermon [32] in setting this probability to

p(N) = Φ(
√

2n(γ − 1) + 3γ)− Φ(
√

2n(γ − 1)− 3γ) (22)

where Φ is the CDF of a normal distribution. For a stable diffusion, we ask that p(N) & 0.5. For the
dimensionality of our problem (n = 2562 for the PROBES dataset), we thus have that N = 2000
minimally satisfy this criteria with p(2000) = 0.64. We can increase our confidence in the solver
by setting N = 8000, s.t. p(8000) = 0.99, which is what is used in this work.

3 Note that some rows and columns of AAT may contain only zeros. These rows/columns correspond to
pixels in the image y that trace back to points in the source plane outside of the region where the pixelated
source x is defined. Such pixels, therefore, have no impact on the source reconstruction and can be ignored.
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Additional figures
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Figure 3: Additional posterior samples for the observation from fig. 1 in the source and lens planes,
along with the χ2

ν of the residuals in the lens plane. The noise level in the data is σN = 0.01.
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