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Abstract

Imaging spectrometers produce data with both spatial and spectroscopic resolution,
a technique known as hyperspectral imaging (HSI). In a typical setting, the purpose
of HSI is to disentangle a microscopic mixture of several material components
in which each contributes a characteristic spectrum—often confounded by self-
absorption effects, observation noise and other distortions. We outline a Bayesian
mixture model enabling probabilistic inference of end member fractions while
explicitly modeling observation noise and resulting inference uncertainties. We
generate synthetic datasets and use Hamiltonian Monte Carlo to produce posterior
samples that yield, for each set of observed spectra, an approximate distribution
over end member coordinates. We find the model robust to the absence of pure
(i.e. unmixed) observations as well as to the presence of non-isotropic Gaussian
noise, both of which cause biases in the reconstructions produced by N-FINDER
and other widespread end-member extraction algorithms.

1 Introduction

A wide range of scientific and applied fields—such as astronomy, geophysics, materials science,
and agriculture—rely on the collection and interpretation of spatially-resolved spectral images as a
workhorse. While the modality of the spectroscopic measurement varies widely across these fields,
in all cases the observation consists of a mixture of a sparse set of "end-members". The scientific
challenge is inverting the mixtures and identify the end-members. If the observations in the mixture
set are homogeneously mixed then the task of inversion is impossible. On the other hand, if the
end-members are immiscible, then the task of inversion is trivial. Here we address the intermediate
case where observations are heterogeneously mixed across the observation set.

A simple way of representing a heterogeneously mixed observation is by a set of multi-dimensional
arrays of weights, and the end-members identifiable by a set of distinct spectra. An example of a
heterogeneously mixed observation set is a color photograph represented by 3 distinct colors: red,
blue and green, and the monochrome images (arrays of weights) associated with the three colors.
(Note that a sepia-toned monochrome photograph does not have three end-members, but just one,
sepia.)

In many scientific applications, the end-member spectra are not as clearly distinct, and the array of
weights can be more than 2D and contain non-spatial components, including time, scattering vectors,
chemical compositions, red-shifts, etc. Thus, while the case of HSI is illustrative, we emphasize
a more encompassing perspective where the observations need not be a spatial map, and can just
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Figure 1: Comparison of end member coordinates extracted using N-FINDER vs. through sampling
of the model posterior using HMC and the no-U turn (NUTS) sampler in Pyro |[Bingham et al.
[2019]]. The left (a) and right (b) panels show datasets generated under small and large values of the
concentration hyperparamter o, respectively.

as well be treated as an unordered set of spectra in which other (e.g. spatial) parameters are not
necessarily needed for the end member extraction.

Each observation in such a dataset is a spectrum made up of discrete samples along spectral dimen-
sion \. In the typical interpretation, each spectrum is a mixture of individual spectral signatures
corresponding to, e.g., electromagnetic emission from different chemical species. An end member is
made up of a singular spectral signature and its associated species, and the goal of the analysis is to
produce weights over the end members present in each observation along with an approximation of
each end member signature.

In prior literature two of the most prevalent types of end member extraction algorithms are geomet-
ric/simplex methods (e.g. N-FINDER, the most widespread instance of these) and subspace reduction
(e.g. nonnegative matrix factorization) [Winter| [1999], [Miao and Qi| [2007]]. Rather than give a
complete overview of existing end member extraction methods (Bioucas-Dias et al. Bioucas-Dias
et al.| [2012]]), we focus here on the simplex approach and its properties which, when compared to a
Bayesian model, draws out the differences between probabilistic and point-estimate approaches and
the advantages of the former.

If linear mixing of spectral signatures is assumed, the number of sample points in the spectral
dimension A is D, and up to K end members are present, then fractional abundances correspond to
points in the K-simplex and the K end members define a D-volume (in a D— dimensional spectral
space) that fully encloses all observed spectra. If we additionally assume no noise or observation
artefacts and that for each end member there is at least one "pure" observation in the dataset for which
the fractional abundance of that end member is 1, then it is automatic that the end members correspond
to a choice of K observations from the dataset that define the maximum-possible N-volume. This
maximum-volume condition is the basis for the N-FINDER algorithm and other simplex methods.

The above description is a useful geometric schema for viewing the mixing process, but exploiting it
for end member extraction requires two additional assumptions beyond that of linear mixing: zero
noise and presence of pure spectra in the data. While these two strong assumptions are not common
to all non-Bayesian approaches, those methods that avoid, e.g., the zero noise assumption still restrict
to isotropic noise and are opaque with respect to the consequences of noise on the model output (for
example, noise adjusted principal components, NAPC |Lee et al.|[[1990]).



We introduce a mixture model for probabilistic estimation of end member parameters. Using the model
and simulated observations we approximate a full posterior distribution over end member spectra
via Hamiltonian Monte Carlo and Variational Inference. By comparing end member reconstruction
via inference under the model to N-FINDER, we find that the former is robust to noise as well as to
incomplete observation of pure samples. Overall, it offers significantly more accurate end member
extraction, as quantified by the reconstruction error of end member coordinates.

2 Data Generation and Models

The formulation is as a Bayesian hierarchical
model with structure given by the plate diagram,
Fig. [2| Sampling is performed once per mixture

component k to determine end member param-
eters (for a total of K, the number of endmem-
bers); per dth spectral dimension to scale the

variance of observation noise in each dimension
(for atotal of D = K —1, the number of spectral
dimensions); and per ¢th observed data point.

Notably, we have simplified the problem by set-
ting the number of spectral dimensions to one
less than the number of end members, K. In
an experimental application, this would require
prior dimensionality reduction of the data. Sec-
ond and more significantly, we have assumed  Figure 2: Plate diagram for the Bayesian end mem-
that K is known. The suitability of this assump- per mixture model

tion is likely domain-dependent. To take a par-

ticular example, in the context of phase identi-

fication in materials science the assumption may be reasonable to the extent that K is known (or
bounded) by the Gibbs phase rule or similar considerations. The prior distributions for parameters

global_fueights, logsk and scaley are

global_weights = i ~ Dir(apl),

locsy = ¢, ~ N(0,1), (M
scaleqg = sq ~ U(c/2,30/2),

where Dir(aol) is a symmetric K -dimensional Dirichlet distribution over global end member
frequencies; N is a D-dimensional Gaussian over end member coordinates; and U is a uniform distri-
bution used to rescale samples from an LKJ distribution over observation noise correlations matrices.
For a single sample, the underlying distribution over phase fractions is a Dirichlet distribution that
depends on both the global weights and a second concentration hyperparameter, o, a measure of the
degree of mixing:

phaseweight; = W; ~ Dir(a;wy) 2)

Finally, the observation likelihood is a multivariate Gaussian with mean vector composed of the
matrix product between the D x K end member coordinates and the local phase weight vector
w;, and covariance given by X(5) (itself dependent on both the LKJ prior and the scale parameters
§=(s0,..-84)):

obs; = y; = N(Cuj;, X), 3)
where C'is the D x K matrix containing the end member coordinate vector ¢j, for all values of k. A
single simulated dataset is produced by first drawing ¢, § and « from the respective Bayesian priors
and then generating N samples from the likelihood, eq. [3]

3 Results & Discussion

After generating 100 simulated datasets of N = 500 observations each in the above manner, we infer
end-member coordinates in two ways: first, by using the model distribution function to sample from
the posterior over model parameters with the no- U turn (NUTS) Hamiltonian Monte Carlo sampler;
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Figure 3: L2 reconstruction error for end member coordinates via HMC posterior samples (left)
compared to N-FINDER (right), with varying values of the hyperparameters oy and o.

second, with mean-field stochastic variational inference (SVI) using the ADAM optimizer and a
learning rate of 0.005. To mitigate failures to converge (a common issue with mixture models) we
run multiple rounds of inference with different random initializations. We select between 3 starts per
dataset for HMC and 10 for VI; in each case, we retain only the inference round that produces the
highest log likelihood for the dataset under the posterior samples (HMC) or approximation (VI). Per
dataset, the sampling and inference ran for a total of 10 minutes on 12 CPU cores.

Figure [3|compares the reconstruction accuracy for 100 instances of this simulation-inference proce-
dure, with 100 distinct combinations of the hyperparameters «; and o. The reconstruction accuracy
of HMC (a) is compared to that of a baseline algorithm, N-FINDER (b). We note, first, that high
concentration parameter oy corresponds to incomplete sampling by the data of the end member
simplex. The combination of high noise (¢) and high «; is the most difficult case for inference and
consequently results in poor reconstruction accuracy for both approaches. Conversely, both methods
do well when o and «; are both small. Where o or «; is large, however, HMC posterior sampling
performs much better than N-FINDER. The improved reconstruction when pure samples are missing
(high «1) or the noise amplitude is high (large o) conforms to our expectations of the benefits of this
mixture model approach. Finally, we investigate posterior approximation with variational inference
as a computationally-cheaper alternative to HMC. Figure [4] presents a three-way comparison of
the reconstruction error for end-member coordinates under HMC, VI and N-FINDER. HMC and
N-FINDER generate the best and worst reconstructions, respectively, and VI is intermediate.

4 Conclusions & Future Outlook

We have applied a probabilistic mixture model to the extraction of end members from spectral
mixtures. Our approach formulates the retrieval of end member spectra and per-observation end
member weights as a Bayesian inference problem using relatively uninformative priors for the phase-
mixing and observation processes. Using simulated datasets we’ve sampled the model posterior with
HMC and found that the resulting recovered end member parameters are more robust to observation
noise and absence, in the data, of pure end member spectra compared to the popular N-FINDER
algorithm. The Bayesian approach provides a principled framework for incorporating relevant
prior information without introducing undue assumptions and opens the door to other intrinsically
probabilistic analyses, such as uncertainty quantification.

The model that we have presented incorporates at least one possibly-onerous assumption, namely that
the number of end members is known. This could be relaxed by replacing the fixed number of mixture
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Figure 4: Residuals for reconstructed end member coordinate components under HMC sampling

(right) and mean field variational inference posterior estimates (center) under the same model and
data, compared to N-FINDER (left).

components and corresponding end member weights by a set of samples from a stick-breaking
distribution, as in a Dirichlet process mixture model. Assumptions about K would thus be condensed
into a single hyperparameter, the concentration parameter of the stick-breaking process.

In impending work, we intend to consider more flexible, non-linear mappings via the incorporation of
Bayesian Neural Networks to infer embeddings. Additionally, we shall apply this analysis framework
to real datasets.

Impact Statement

Spectral unmixing is the process of decomposing the spectral signature of a mixed observation into a
set of end-members and their corresponding weights. It is used for providing information to monitor
different natural resources in agricultural, forest, geological planning; and environmental problems
such as erosion, deforestation, forest fires, etc. Spectral unmixing is often made challenging by noisy
and incomplete data. To extract the most information possible from such sets of observations, we
propose a probabilistic approach that offers a principled framework for incorporating relevant prior
information without introducing undue assumptions. In addition this Bayesian reformulation of the
problem is a necessary precursor to probabilistic analyses such as uncertainty quantification, which
are unavailable under a large majority of existing approaches to spectral unmixing. While we are not
the first to apply Bayesian inference to this task, our model encompasses the entire analysis and is
less restrictive with respect to assumptions on the noisiness and information content of observations.
In addition we’ve applied black box inference techniques instead of customized sampling. [Zare and
Gader, 2011} [Bchir et al., 2010]
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(a) Did you include the code, data, and instructions needed to reproduce the main experimental results
(either in the supplemental material or as a URL)? No, but these will be provided through an existing
Github repository that we will make public

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
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(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-
tion or offensive content? n/a
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