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Abstract

Machine learning is a powerful way to learn effective dynamics of physical sim-
ulations, and has seen great interest from the community in recent years. Recent
work has shown that deep neural networks trained in an end-to-end manner seem
capable of learning to predict turbulent dynamics on coarse grids more accurately
than classical solvers. All these works point out that adding Gaussian noise to
the input during training is indispensable to improve the stability and roll-out
performance of learned simulators, as an alternative to training through multiple
steps. In this work we bring in insights from robust machine learning and propose
to inject adversarial noise to move machine learning systems a step further towards
improving generalization in ML-assisted physical simulations. We advocate that
training our models on these worst case perturbation instead of model-agnostic
Gaussian noise might lead to better rollout and hope that adversarial noise injection
becomes a standard tool for ML-based simulations. We show experimentally in the
2D-setting that for certain classes of turbulence adversarial noise can help stabilize
model rollouts, maintain a lower loss and preserve other physical properties such
as energy. In addition, we identify a potentially more challenging task, driven
2D-turbulence and show that while none of the noise-based attempts significantly
improve rollout, adversarial noise helps.

1 Introduction

Simulating the dynamics of large-scale spatial and temporal data is a difficult problem in science and
engineering. A representative task is predicting turbulent fluid dynamics, as turbulence is remarkably
difficult to model due to its multiscale and chaotic nature: infinitesimal changes to the input may
drastically alter the future state. In the last decades many outstanding numerical solvers have been
designed to solve problems governed by complex partial differential equations (PDEs). Yet the price
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to pay to obtain a high precision solution is a loss in efficiency of these tools. Thus, obtaining a better
accuracy-speed trade-off is a key topic in the research community.

Recently, the use of machine learning models, especially deep learning models, has assisted in
many broad and profound advances in the natural sciences. In particular, deep learning has been
impressively promising in numerical simulations. Some research works use physical information to
assist in neural network modeling; e.g., Wang et al. [2020] incorporate physical knowledge into neural
networks to perform turbulence simulations. Sanchez-Gonzalez et al. [2018, 2020] demonstrate graph
networks can effectively model the information exchange between interacting particles and obtain
realistic simulation results. Kochkov et al. [2021] combine neural networks with a numerical solver
to simulate turbulence. Pfaff et al. [2020] utilize graph networks to adapt the mesh-based physics
model to learn dynamics for plastics. Closest to our work, Stachenfeld et al. [2022] show deep neural
networks can learn to simulate turbulence at low resolution conditions with results comparable to
those of high-resolution PDE solvers.

A noteworthy common thread in the above pure ML-based methods is the observation that injecting
Gaussian noise into the input during training is the key to long rollout generalization for models
which are trained with single steps only (rather than trained through a rollout). In this work, we aim
to establish an alternative, arguably more principled avenue to noise injection for physics, bringing in
insights from robust training in computer vision where one also injects informative noise to improve
the quality of representations learned by the networks [Salman et al., 2020]. In particular, while
Gaussian noise is generic and model-independent, adversarial noise is derived from the model itself
in a worst-case fashion, and this specificity might achieve a better trade-off between robust rollout
generalization and accuracy.

While widespread in computer vision, to our knowledge there are only a couple works addressing
the application of adversarial noise to assist the natural sciences, Cubuk and Schoenholz [2020] and
Schwalbe-Koda et al. [2021]. Both address the task of learning the energy field given a molecule
configuration using neural nets, so called NN potentials. Cubuk and Schoenholz [2020] identify
the existence of adversarial directions along which the NN potentials can suffer from larger loss.
Schwalbe-Koda et al. [2021] build on this idea for an ensemble of NN potentials. Instead of sampling
from the given molecule distribution, they adversarially attack the variance of the ensemble prediction,
to get adversarial configurations. Then they sample these adversarial examples and train their models
on them. This is distinct from our work: their adversarial noise is a tool to improve the sampling
quality, and we inject it directly to the inputs to improve rollout generalization.

Our contributions are as follows:

1. We introduce the idea of adversarially robust machine learning to simulators for physical
problems, and in particular the simulation of turbulence trajectories. To the best of our
knowledge we are the first to consider ideas from the field of trained adversarial robustness
for machine learning models to stabilize simulations of physical systems.

2. We conduct a set of 2D turbulence experiments based on prior work in Stachenfeld et al.
[2022] to demonstrate the benefit of adversarial noise for ML simulations of astrophysical
turbulence to stablization of rollout. Our results paint an encouraging picture.

3. In revisiting prior work, we identify a difficult simulation problem, namely driven turbulence.
We present evidence that neither models trained with Gaussian noise nor with our adversarial
noise can significantly stabilize long model rollouts in this regime, although adversarial
noise helps more.

2 Task and Data Description

Here, we restrict ourselves to two-dimensional turbulence. Following Stachenfeld et al. [2022],
we study decaying turbulence, in which an isothermal gas is initialized with a uniform density and
random velocity field on a periodic domain and is allowed to evolve freely from there. We also look at
driven turbulence, where energy is injected in the system, not considered in Stachenfeld et al. [2022].

The goal is to predict the turbulence configuration over a long rollout trajectory, given a spe-
cific input. Formally, for each time step t ∈ {0, 1, . . . , T}, the turbulence configuration is de-
scribed by a 3-dimensional tensor: Xt ∈ RC×H×W , and the task is to predict the entire trajectory
{X0, X1, · · · , XT }, given X0. Here, H and W denote the grid size on the two spatial axes, in our
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case, 32. C denotes the number of features, each of which corresponds to a physical variable that we
would like to predict. For general turbulence simulation, these quantities include density, velocity,
and pressure. We focus on the isothermal process, as is common in astrophysical turbulence. In this
case, C = 3, and the variables are the x-velocity, y-velocity and density. The associated energy field
for this isothermal process is the kinetic energy, defined point-wise as

E =
1

2
ρ(v2x + v2y), (1)

for vi the velocity and ρ the mass density.

We generate the data from a state-of-the-art PDE solver, Athena++ [Stone et al., 2020]. We produce
high-resolution data with grid size 64x64 at a time interval of 1ms (“simulation step"), and down-
sample them to 32x32. We sample 27 trajectories in total with evenly spaced temporal axis t from 0 s
to 1.05 s.1 24 of them are used for training, while the remaining 3 are left as a holdout set.

3 Model and Training

Following previous works, we adopt the end-to-end training pipeline to obtain our deep simulators.
Following [Stachenfeld et al., 2022], we use the Adam optimizer [Kingma and Ba, 2014] with
initial learning rate 10−4, and train the model for 320 epochs with batch size 32. We apply temporal
downsampling and fix the “model step" size ∆t to 32ms, which is 32 times coarser than the Athena++
ground truth, i.e., one model step corresponds to 32 simulation steps.

Encode-U-Net-Decode (U-Net). U-net has been a popular benchmark and shown competitive
performance in numerous previous works [Li et al., 2020, Pathak et al., 2020, Wang et al., 2020].
We use 1x1 convolution as the structure of the encoder and the decoder. The intermediate U-Net is
adopted from Ronneberger et al. [2015].

Loss. We normalize the inputs Xt to be zero-mean and unit variance before training. The model
receives (normalized) Xt as input, and predicts (normalized) Xt+∆t. We use the Mean Square Error
(MSE) loss to optimize parameters. For independent diagnostic purposes at testing we will also
compute the Energy Field Root MSE Loss (ERMSE), a quantity that we do not optimize for and which
measures distance to another physical ground truth. It is calculated over the pixel-wise energy field E
of Eq. (1), then taking the square-root to maintain the correct unit.

Noise Injection. As pointed out by Sanchez-Gonzalez et al. [2018], Pfaff et al. [2020], Stachen-
feld et al. [2022], injecting Gaussian noise to the input during training is the key to long rollout
generalization. Specifically, instead of optimizing L(f(Xt; θ), Xt+∆t), they optimize

L(f(Xt +N (0, σ2I); θ)), Xt+∆t). (2)

Our approach. In this work, we propose using a different injection scheme than the ones previously
considered. In computer vision, it has been observed that models trained to classify natural images
are not robust to small, adversarial perturbations of the input. The most common approach to defend
against malicious inputs is adversarial training (AT) [Madry et al., 2018]. Concretely, during training
of a neural network f(·; θ) with parameters θ, for each training epoch and each training sample x
we first calculate its worst case perturbation δ within a certain radius of the input, and then train
on xadv = x + δ instead, updating the data again at the next epoch. To calculate the worst case
perturbation for a sample (x, y) of a model with loss function ℓ we optimize

δ = arg max
||δ||≤ϵ

ℓ(f(x+ δ; θ), y), (3)

with an iterative procedure called projected gradient descent [Kurakin et al., 2017] over 10 iterations.
For training the machine learning model on the turbulence task with MSE loss we thus produce
adversarial perturbations at every training step by iteratively optimizing2

Adv_Noise = arg max
||δ||≤ϵ

LMSE(f(Xt + δ; θ), Xt+∆t). (4)

Here the norm can be taken as || · ||2 or || · ||∞, as is standard for computer vision tasks.
1Following Stachenfeld et al. [2022], we discard the first 50ms of data due to the unstable nature of Athena++.

We use data from 0.05 s ∼ 1.05 s to train our model.
2In Stachenfeld et al. [2022], the residual Xt+∆t −Xt is used as the target and noise is added to the input

Xt and subtracted from the target Xt+∆t −Xt, which is equivalent to not changing Xt+∆t in our case.
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Figure 1: Test MSE and ERMSE losses, averaged over the 3 test trajectories. Top row: Decaying
Turbulence. Models trained with adversarial noise show lower losses, especially for ERMSE, at
the beginning. The noise magnitude (ϵ in Eq. (4)) of the ℓ2 noise is 10−6, and for ℓ∞ is 10−4. Note
that decaying turbulence evolves towards a stationary uniform-density fluid, which could explain
that ERMSE decays after a while. Bottom row: Driven Turbulence. Models trained with our
Adversarial Noise show lower losses for longer rollouts. The noise magnitude (ϵ in Eq.(4)) of the ℓ2
noise is 10−5, and for ℓ∞ is 10−4.

4 Experiments

4.1 Adversarial Noise helps Simulating Decaying Turbulence

For both noise models we use a small grid search over the noise parameter ϵ. The first row of
Figure 1 shows pixel-wise MSE and ERMSE test loss of models, averaged over the 3 test trajectories,
trained with/without noise, where we have picked the best adversarial model for each ℓ2 and ℓ∞
noise respectively. Models trained with adversarial noise, both ℓ2 and ℓ∞, exhibit lower loss
values, especially for ERMSE at early rollout, suggesting better energy preservation. To provide a
visualization (Figure 2) we select the best Gaussian model to show several snapshots produced by our
models on one of the test trajectories, trained with/without noise. Models trained with Gaussian noise
and our adversarial noise can maintain quality on par with the ground-truth simulator.

4.2 Driven Turbulence

The bottom row of Figure 1 shows test MSE and ERMSE loss of models trained with/without noise
on driven turbulence along 3 driven test trajectories, showing a larger number of model testing steps,
since here the fluid does not become stationary. Increased loss values, as well as the visulization in
Figure 3 show that driven turbulence is a more difficult task to simulate. We find that adversarial
noise can somewhat contribute to rollout stabilization, while leaving significant improvements as a
future challenge.

5 Conclusion

We have introduced tools from robust machine learning to increase accuracy and efficiency via
learned low-resolution physical simulations that aim to replace high-resolution engineered ones. Our
experimental results for 2D turbulence on the benefits of adversarial noise are encouraging, even for
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Figure 2: Decaying Turbulence Simulation Snapshots. Within each subfigure, from left to right:
Ground Truth; vanilla model trained without noise; model trained with Gaussian noise; model trained
with the ℓ2 adversarial noise; and model trained with the ℓ∞ adversarial noise. Left: Density. Middle:
vx. Right: vy . From Top to Bottom: configuration at model step 10, 21, and 32 (simulation step 320,
672, and 1024.) The σ2 in Eq. (2) of the Gaussian noise is 10−4.

Figure 3: Driven Turbulence Simulation Snapshots. Within each subfigure, from left to right, we
illustrate: Ground Truth; vanilla model trained without noise; model trained with Gaussian noise;
model trained with the ℓ2 adversarial noise; and model trained with the ℓ∞ adversarial noise. Left:
Density. Middle: vx. Right: vy. From Top to Bottom: configuration at model step 10, 20, and 30
(simulator step 320, 640, and 960.) The σ2 in Eq. (2) of the Gaussian noise is 10−6.

the more challenging setting of driven turbulence, and we hope that further studies in the 3D setting
will demonstrate even higher benefits.

Broader Impact

Our work is unlikely have potential and direct ethical consequences as we discuss turbulence simu-
lations in a pure physics context. For future societal consequences, since we empirically test how
adversarial noise can assist simulation, we not only show it is beneficial for this specific task, but also
bring a new tool to the physics community in general.
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