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Abstract

We present a new method which leverages conditional Generative Adversarial Net-
works (cGAN) to reconstruct galaxy cluster convergence, κ, from lensed CMB tem-
perature maps. Our model is constructed to emphasize structure and high-frequency
correctness relative to the Residual U-Net approach presented by Caldeira, et. al.
(2019). Ultimately, we demonstrate that while both models perform similarly in the
no-noise regime (as well as after random off-centering of the cluster center), cGAN
outperforms ResUNet when processing CMB maps noised with 5µK/arcmin
white noise or astrophysical foregrounds (tSZ and kSZ); this out-performance is
especially pronounced at high ℓ, which is exactly the regime in which the ResUNet
under-performs traditional methods.

1 Introduction

The universe’s oldest light, the cosmic microwave background (CMB), encodes in its temperature
and polarization a wealth of information. While the study of the CMB has a long and multi-faceted
history, the study of the gravitational effects imprinted on the CMB at later stages of the universe has
captured the attention of modern cosmology.

Specifically, the study of gravitational lensing of the CMB by galaxy clusters has enabled the
reconstruction of the gravitational potential field, ϕ, around these clusters. For one, this field contains
information about the spatial distribution of these clusters, which enables insights into the parameters
that govern their formation, such as dark energy and massive neutrino properties [14]. Moreover, a
variety of cosmological parameters, such as Ωm, the mass density of the universe, can be constrained
by recovering the total mass of these clusters from ϕ [5]. However, with recent and upcoming CMB
surveys - e.g. AdvancedACTPol [20] and Simons Observatory [2] - expected to amass lensed CMB
measurements at unprecedentedly high signal-to-noise ratios, discoveries tied to the study of CMB
lensing are likely to only become more significant.

Currently, the most prevalent method for reconstructing ϕ from lensed CMB is the quadratic estimator
(QE), an estimator formed from quadratic combinations of data [10]. However, QE is shown to be
sub-optimal for low-noise polarization data due to the lensing itself [21], as well as for low-noise
temperature data due to the cosmic variance of the background CMB gradient [8] [9], and thus not
suited for the higher signal-to-noise ratios promised by this novel generation of CMB surveys. As
such, a variety of alternatives have been proposed, including a gradient-inversion technique [8], a
maximum-likelihood-estimator [18], and a hierarchical Bayesian inference method [16].
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Machine learning (ML)-backed methods also present an attractive alternative to QE. Indeed, Caldeira,
et. al. [7] use a Residual U-Net (ResUNet) to recover κ maps (the dimensionless surface-mass density
along the line of sight) around galaxy clusters from input lensed CMB with higher signal-to-noise
ratios than QE over a broad range of angular scales in the low-noise regime. However, the quality of
ResUNet’s predictions materially degrades in noisier conditions, as well as at higher angular scales,
where it underperforms QE.

One disadvantage of using the ResUNet method is its reliance on a static loss function (such as
L1/L2) during network optimization. While this static loss function has been shown to capture
low-frequency components, it essentially formulates the image-to-image translation problem as a
per-pixel regression problem, thereby ignoring dependence between pixels in the output space and
often leading to a loss of sharpness and structure [13].

In this work, we aim to overcome this disadvantage by optimizing the ResUNet with a trainable
loss function (discriminator) in conjunction with an L1 loss, effectively transforming the ResUNet
into a modified Pix2Pix conditional generative adversarial network (cGAN) [11]. This architecture
is particularly adept at extrapolating structure and high-frequency components in image-to-image
translation tasks while maintaining low-frequency correctness. We train both our cGAN and a
ResUNet to recover κ maps from lensed CMB temperature maps around galaxy clusters under four
conditions: no noise, astrophysical (tSZ and kSZ) foreground noise, 5µK/arcmin white noise
(which mimics instrumentation noise), and random off-centering (which mimics the fact that the
clusters centers will not always be perfectly centered). We demonstrate that our cGAN outperforms
ResUNet under all four conditions, and that this out-performance becomes especially pronounced in
the noisier regimes and at high ℓ 1.

2 Data

We employ the Websky Extra-galactic CMB Simulations [19] to model the lensed CMB temperature
anisotropies, tSZ and kSZ effects, and κ maps around corresponding galaxy clusters. These simu-
lations are tailored to the upcoming ground-based CMB surveys such as the Simons Observatory
and Advanaced ACTPol [19], rendering them ideal for our purposes 2. We select 50, 000 clusters
matching the following criterion: M200m ∈ [1013, 5 ∗ 1014]M⊙ and z ∈ [0.47, 0.6], and cut out the
lensed CMB temperature, κ, tSZ, and kSZ maps in 128 × 128 arcmin squares around the cluster
center. Additionally, we create random 5µK/arcmin 128 × 128 white noise maps. Notably, all
maps are projected into 2D euclidean space, as our models are only capable of handling such formats,
using Orphics [15]. From these maps, we compile three feature datasets, XCMB , XCMB+tSZ+kSZ ,
and XCMB+5µK , and use the κ maps as our target dataset. Additionally, we repeat this process for
the pure CMB and κ maps with random off-centering in both RA and Dec directions by a Gaussian
with mean 0 and 1 arcmin variance, resulting in one additional feature/target pair, {Xoc, κoc}. All
datasets are thus size (50000, 128, 128, 1), and we split each using a 80:10:10 split.

3 Method

Our cGAN is made up of two main components: G, the generator, and D, the discriminator. Both
G and D are convolutional neural networks (CNNs), which have demonstrated unparalleled power
in dealing with image-data [3]; moreover, G is a Residual U-Net, a type of CNN which uses
an archetypal encoder-decoder scheme that has proven adept at a wide array of image-to-image
translation tasks [22]. G learns to map the observed CMB temperature map, X , to a predicted
κpred map, G : X → κpred, while D takes as input the concatenated generator-predicted κpred and
ground-truth κ maps, and predicts a grid of the likelihood [0, 1] that each 70× 70 patch in κpred is
real, D : {κpred, κ} → Doutput. We model G after the ResUNet proposed by Caldeira, et. al. [7],
albeit with some modifications, and D after the convolutional PatchGAN architecture proposed by
[11]. Ultimately, G is trained to produce κpred maps as similar as possible to the ground truth κ map,
while D is trained to discriminate between the "fake" κpred and the ground-truth κ.

1As the present paper focuses on reconstruction in the high-ℓ regime, and because of the fact that QE is
computationally prohibitively expensive, we focus on comparing our cGAN architecture exclusively to ResUNet.

2The following cosmological parameters are used in the Websky simulations: Ωm = 0.31,Ωb =
0.049,Ωc = 0.261, H0 = 100 ∗ 0.68, ns = 0.965, τ = 0.0943 [19].
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Figure 1: Structure of the cGAN. As illustrated, the generator, G, based on the ResUNet architecture
takes as input XCMB and produces a predicted κ map. These are fed into the discriminator, D, to
produce the first loss function, LcGAN (G,D) used to update the parameters of both G and D. An L1

loss is also included, as it has been shown to emphasize low-frequency correctness.

G is composed of an encoder, a bottleneck, and decoder. The encoder is made of six encoding blocks,
each of which consists of a down-sampling convolutional layer followed by a simple convolutional
layer. The number of filters for each block increases as 32 ∗ 2n, where n is the index of the encoder
block from n ∈ {0, 5}. The decoder follows the same structure, however the first convolutional
layer of each decoder block is a 2D transpose convolutional layer, and the number of filters goes
as 32 ∗ 25−n. Residual connections are established between encoder and decoder blocks with same
n to allow low-level feature information to flow more easily through the network. The output of
the decoder block is fed into a final 2D transpose convolutional layer after which tanh activation is
applied 3. D is composed of four encoding convolutional layers with filter size 64 ∗ 2n, followed by
a simple convolutional layer with filter size 512, a final convolutional layer with filter size 1, and a
sigmoid activation function. Batch normalization is applied to all convolutional layers in G and D
except the first, and LeakyReLU activation functions follow each convolutional layer except for the
last. Additionally, the first two decoding blocks in G have dropout = 0.5 applied. The models are
constructed using the Keras interface of the Tensorflow API [1], and we use the general GAN update
structure laid out by Brownlee [6].

We train both our cGAN and the ResUNet three separate times on the 40, 000 cluster
{XCMB , κ}, {XCMB+tSZ+kSZ , κ}, {XCMB+5µK , κ}, and {Xoc, κoc} training datasets. Notably,
cGAN is trained to minimize both the discriminator loss and an L1 loss; more specifications on
optimization are provided in the Appendix. We train both models for 100 epochs using mini-batches
of 32 samples on a single NVIDIA Tesla P100 GPU with 16GB of Graphic RAM, which takes 3.8
hours for the ResUNet and 8.1 hours for the cGAN.

4 Results

All results are generated over the held-out 5000-cluster test dataset. Figure 2 provides a sample
visualization of ResUNet and cGAN predictions under various noise conditions for a random test
cluster. From visual inspection, it appears as if cGAN captures significantly more information than
ResUNet under all noise conditions; this is especially apparent in the noised (astrophysical foreground
and 5µK/arcmin) regimes, where cGAN continues to recover the majority of structural information,
whereas significant blurring and/or loss of structure has occurred in the ResUNet predictions. In
order to quantitatively test the performance of cGAN, we compare the power spectrum (generated
using the Orphics package [15]) and one-point PDF of the predictions of cGAN and ResUNET to the
ground-truth κ maps in Figure 3.

In observing the mean power spectra, it is clear that the ResUNet power spectrum is able to mimic
that of the ground-truth relatively well in the noiseless regime, as well as after random off-centering.
However, it materially diverges from the ground-truth power spectrum under both astrophysical
foreground and 5µK/arcmin noise regimes; this divergence is especially pronounced at high ℓ.

3For consistency, we use this same network architecture and parameters for the ResUNet to which we
compare our cGAN.
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Figure 2: Visualization of sample predicted κpred maps from the cGAN and ResUNet for a random
cluster in the test dataset. The predictions are made for CMB temperature maps with either no
noise, astrophysical foreground noise (tSZ+kSZ), 5µK/arcmin white noise, or random off-centering
according to a Gaussian with 1arcmin variance.

Figure 3: The mean over the 5000-cluster test dataset of the one-point PDF/power spectra of the
cGAN and ResUNet predicted κpred maps under various noise conditions. For the power spectra,
we also calculate the standard deviation in predicted power spectra over the test dataset using the
bootstrap method, and include these standard deviations in as the shaded region in the graphs (the
average standard deviation per cluster is on the order of magnitude of 10% for all predictions).

Conversely, the cGAN power spectrum is able to stay faithful to the ground-truth under all four
regimes, and does not materially degrade even at high ℓ: no noticeable degradation is visible until
around ℓ ≈ 6500. The relative strength of the cGAN is further emphasized in the average one-point
PDFs, in which ResUNet’s one-point PDF materially diverges from the ground-truth κ map under the
noised regimes while cGAN’s does not. Ultimately, cGAN’s successes at high ℓ, highlight the relative
ability of the discriminator architecture at emphasizing small-scale structure in the predicted κ maps.

5 Conclusion

In the present paper, we demonstrate that the inclusion of a discriminator in the optimization of a
Residual U-Net can materially improve its performance in recovering galaxy cluster convergence from
lensed CMB temperature maps. Specifically, across both visualizations of predicted κ maps, as well
as the power spectra and one-point PDFs of these κ maps, we show that the disciminator-enhanced
network (cgAN) noticeably outperforms ResUNet under a variety of noise conditions. Moreover,
we demonstrate that this out-performance becomes especially pronounced in noisy regimes (such
as instrumentation or astrophysical foreground noise), as well as at high ℓ. This out-performance at
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high ℓ is particularly encouraging, as small-scale features are challenging to recover using traditional
QE methods. In future work, it will be valuable to explore 1) cGAN’s performance under a wider
variety of noise conditions, 2) cGAN’s relative performance with additional loss functions (such as a
Fourier-space loss), and 3) alternative GAN structures (such as Wasserstein GAN [4]).

6 Broader Impact

We employ a generative adversarial network (GAN) - a popular machine learning model - in an
astrophysical context. GANs are already present in myriad social applications, and while most use
cases are benign, they have been maliciously employed across multiple social media platforms, from
generating fake Facebook accounts to conducting personation attacks on targeted subjects [17]. The
applications of such algorithms to astrophysics however has been quite limited. Nonetheless, in
applying GANs in these contexts, we can better understand where and why they fail, which can help
improve our ability to spot maliciously employed GANs more broadly.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 2.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
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(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] The code will
be available upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] With additional training details available in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] All open-source

code and datasets have been cited in the body of the paper.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Network Optimization

The cGAN network is trained by optimizing the GAN loss function from Isola, et. al. [11], given by

LcGAN (G,D) = Eκ[logD(κ)] + EXCMB
[log(1−D(G(XCMB))]. (1)

Because this loss function is driven by D, and D is constructed to emphasize localized structure
recovery and high-frequency correctness, we include an L1 loss as well in order to promote low-
frequency correctness in the output space,

L1(G) = EXCMB ,κ[∥κ−G(XCMB)∥]L1 . (2)

Thus, the total network loss is the weighted sum of LcGAN and L1 , where we weight L1 by a factor
of 100 relative to LcGAN as suggested in Isola, et. al. [11]. This gives a composite objective function

G∗
cGAN = argmin

G
max
D

LcGAN (G,D) + 100LL1(G), (3)

which is minimized relative to D (as D should maintain a maximum distance between real and fake
in every iteration) and maximized relative to G.

During cGAN training, we alternate between one update step on D and one update step on G.
Specifically, we (1) generate a batch of fake samples, G(XCMB) → κpred, corresponding to a real
batch of samples κ, (2) update the discriminator using the batch of real κ, (3) update the discriminator
using the batch of generated κpred, (4) update the generator using the composite loss. Importantly,
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we divide the objective by 2 while optimizing D, slowing down its learning rate relative to G, as
otherwise D has been found to outpace G [11]. Our training is run on the Adam optimizer [12], with
a learning rate of 2 × 10−4 and β1 = 0.5, β2 = 0.999. Additionally, for the ResUNet, we use a
learning rate scheduler as well, which reduces the learning rate by a half every time the training loss
has not improved for five consecutive epochs.
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