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Abstract

The demonstrated success of transfer learning has popularized approaches that
involve pretraining models from massive data sources and subsequent finetuning
towards a specific task. While such approaches have become the norm in fields such
as natural language processing, implementation and evaluation of transfer learning
approaches for chemistry are in the early stages. In this work, we demonstrate
finetuning for downstream tasks on a graph neural network (GNN) trained over a
molecular database containing 2.7 million water clusters. The use of Graphcore
IPUs as an Al accelerator for training molecular GNNs reduces training time from
areported 2.7 days on 0.5M clusters to 1.2 hours on 2.7M clusters. Finetuning the
pretrained model for downstream tasks of molecular dynamics and transfer to a
different potential energy surface took only 8.3 hours and 28 minutes, respectively,
on a single GPU.

1 Introduction

Pretraining models on massive datasets followed by finetuning towards specific downstream tasks is
commonplace in natural language processing and computer vision approaches. The uptake of similar
approaches for chemistry is lagging due to the limited number of large datasets and long training
times involved. Training atomistic property prediction models from massive scientific datasets is a
compute-intensive task, and much of the focus in recent literature has been on transformer-based
models [1,2]. The reduction of atomic positions to character strings via the SMILES notation has
aided the generation of large datasets. For example, Wang et al. trained the BERT architecture on
18.7M SMILES strings from the ZINC database [1]], while Chithrananda et al. trained a network
based on the RoBERTa architecture, called ChemBERTa, on 77M SMILES strings obtained from
PubChem [2]. ChemBERTa was later shown to perform well on downstream property prediction
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tasks [3]]. RNN-based generative models have been trained on a 1M-molecule subset of GDB-13 [4]
and a 1.6M-molecule subset of ZINC [5]. More recently, Ross et al. developed a transformer-based
encoder that uses linear attention, called Molformer, to efficiently train on >1000M SMILES strings,
outperforming several graph- and geometry-based baselines on regression and classification tasks
from benchmark datasets [6]]. Subsequent work has explicitly incorporated spatial properties into
Molformer for training on comparatively smaller datasets [[7].

SMILES strings describe atom compositions and bonding configurations, but neglect information
about the 3D geometry and long-range interactions, such as interactions between molecules. Here,
we answer a benchmark challenge set forth in our prior work [8] of generating a predictive model
that preserves intermolecular interactions. This benchmark is supported by an open-source dataset
containing 4.95M unique hydrogen bonded clusters of water molecules [9]. All clusters in the dataset
are minima on the potential energy surface (PES) computed using the TTM2.1-F potential, making
them useful for static property prediction. For example, Bilbrey et al. [10] trained the SchNet neural
network on a subset of 500,000 clusters and obtained a mean absolute error per water molecule of
0.002 kcal/mol on a 10,500-sample test set, which included cluster sizes outside of the range of those
included in the training subset, indicating the ability of the network to extrapolate. Training on ~10%
of the full benchmark dataset took 2.7 days scaled over four NVIDIA V100 GPUs [10], making it
impractical to train on larger subsets, much less the complete dataset, with traditional hardware. The
computing power required for training neural networks on very large datasets restricts exploration of
this area to researchers with ample access to GPU clusters or Al hardware accelerators [[L1, 12} 13].

In this work, we demonstrate the training and downstream in-
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open the door for experimentation by a larger number of re-
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this research are (1) the massive scale of a water cluster
database that contains millions of 3D geometries and (2) the use of a novel Al accelerator that
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Figure 1: Downstream workflow.

2 Methods

Data Collection. The dataset of water cluster minima used for pretraining was obtained from an
existing database generated using Monte Carlo temperature basin-paving (MC-TBP) simulations
driven by the TTM2.1-F potential [16}17]. Each cluster is associated with 3D coordinates r and
energy E. The dataset of non-minima water clusters for downstream MD via data space expansion
was obtained from MD simulations performed at 260K and 300K. Each non-minima includes atomic
forces F, r, and E. To demonstrate transfer of the PES, E for a subset of 5,000 minima were obtained
using the MB-pol interatomic potential [[18} [19]].

Hardware Accelerators. Accelerators designed specifically for AI/ML applications show improved
processing speed, scalability, and energy efficiency, allowing faster training on larger datasets. In
particular, Graphcore’s IPU accelerators show a 4 x speedup over NVIDIA V100 GPUs for training
of GNNs [20]. Graphcore’s high-level development framework PopTorch was used to implement the
Pytorch Geometric (PyG) library [21]], which includes the SchNet framework. We trained SchNet on
a dataset containing 2,726,710 water clusters, using hyperparameters reported in previous work [[10]].

Finetuning. Pretraining molecular GNNs on large datasets have been shown to improve generaliza-
tion in downstream tasks [22]. Use of the PyG implementation of SchNet allows the model to be
easily transferred between IPUs, GPUs, and CPUs. The saved model weights from the IPU-trained
model constitute the pretrained network, which we update to obtain (1) drive MD simulations via
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Figure 2: (Left) Static predictions of Ey,0, Finag, and F,,e on minima (e) and non-minima (X)
test sets. (Center) MD using the TTM2.1-F potential and NNPs for water clusters of size N=10, 20,
30. (Right) Static TTM2.1-F predictions on MD trajectories generated by the NNPs.

accurate predictions of £ and F on non-minima and (2) accurate predictions of F on a different PES.
Inference using trained models was performed on a CPU, while finetuning was performed on a single
NVIDIA V100 GPU.

Active Sampling. We adapt an active sampling strategy when finetuning for non-minima to minimize
bias when compiling the small dataset. The training set was divided into a small training subset and
large reserve set. During training, the mean absolute error (y.) and standard deviation of errors (o)
in F were computed over the validation set. Then, £; was calculated for a subset of reserve samples.
A sample was moved from the reserve set to the training subset if 1 — erf ((€5 — 12)/0¢) < Drols
where py, is a chosen tolerance and erf(x) is the Gaussian error function.

3 Results and discussion

We present performance between three model variations: SchNet trained on 2.7M water clus-
ter minima (PRETRAINED), the pretrained model further finetuned using a much smaller dataset
(FINETUNED), and a SchNet model trained from scratch using only the smaller dataset (SCRATCH) —
on two downstream tasks — data space expansion and PES transfer.

Model Pretraining. The SchNet model was trained on 2.7M water clusters of size N=3-25 with a
0.8:0.1:0.1 train-validation-test split. Training took 4.2, 2.2, or 1.2 hours scaled across 16, 32, or 64
IPUs, respectively. The validation loss increased with the number of IPUs to 0.0017, 0.0020, and
0.0030, respectively; therefore, we used the model trained over 16 IPUs to finetune for subsequent
downstream tasks. This model showed a similarly low test-set error of 0.0018 kcal/mol.

Data Space Expansion. MD simulations explore non-minima on the PES and can be driven by
neural network potentials (NNPs). The forces F used to drive atomic motions are obtained as

Table 1: Test-set accuracy, reported as mean absolute error (MAE) in Ey,o (kcal/mol), Fiag
(kcal/mol/A), and F,ng. Test sets were derived from the specified dataset.

Hardware Dataset Initialization  Nipain  Eu,0 Frag  Fang

IPU minima scratch 27M  0.0018 21.89 0.501
GPU non-minima  scratch 11.8K 0.3548 18.76 0.238
GPU non-minima  pretrain 11.6K 0.1316 894  0.098




the negative of the NNP gradient. A force term is typically added to the loss function to improve
prediction accuracy [23]]. Training without the force term, as was done for the pretrained model,
leads to poor prediction of F, even through the accuracy in E predictions on minima configurations
is high. Moreover, the pretrained model produces poor E predictions on non-minima, necessitating
the need for the data space covered by the model to be expanded. Finetuning the pretrained model
on a much smaller subset of non-minima (>1% of the minima dataset) and including a force term
in the loss produces a NNP with good predictions of non-minima F and E. Because of the roughly
three-order-of-magnitude decrease in the size of the training set when using the pretrained model,
training was accomplished on a single NVIDIA V100 GPU in 8.3 hours.

Table[T] shows the test-set accuracy of the pretrained model and models trained on non-minima with
and without pretraining. The test set corresponds to the specific training set, i.e., the pretrained
model is tested on minima, while the models trained on non-minima are tested on non-minima.
Following Chmiela et al. [23]], we quantify the topological accuracy of atomic force predictions

by the magnitude error Fy,.e = ||F|| — ||F||, which describes the extent to which the slope of the

predicted and reference PES differ, and the angular error Fj,, = cos™* (F/||F|| - F/||F||) /7, which
describes the orientation of the predicted force direction relative to the reference force direction and
ranges between 0 (aligned) and 1 (inverted). Figure E] shows static errors for the three models on
minima and non-minima. Training from scratch on non-minima greatly improves static predictions
of E and provides some improvement in F predictions, while finetuning from the pretrained model
greatly improves predictions of F and E' for both minima and non-minima.

We then performed MD simulations driven by the NNPs (Fig. [2). Berendsen NVT dynamics of three
clusters (/N = 10, 20, 30) at 300K were simulated 10 times each with different random seeds. The
mean (bold lines) and individual simulations (dashed lines) are shown for TTM2.1-F and the NNPs
trained on non-minima. MD simulations using the pretrained model are not shown, as the predicted
energies were several orders of magnitude below those from TTM2.1-F. The mean E of the finetuned
model aligns for all cluster sizes, while that of the model without pretraining aligns only for N = 10.
We then calculated the TTM2.1-F E on each point in the NNP-generated trajectories to validate the
resulting molecular structures. Notably, only the finetuned model produced valid dynamics (£ < 0
kcal/mol). Though the model without pretraining predicted F of similar magnitude to TTM2.1-F, the
generated structures were calculated by TTM2.1-F to be highly unstable. In fact, the model trained
from scratch did not outperform even the pretrained model in generating stable dynamics.

PES Transfer. The PES of a physical sys-
tem will have a different representation de-
pround T pending on the method of calculation, each of
= Scratch which can have different associated computa-
[ Finetuned tional costs. Classical many-body force fields,
such as TTM2.1-F, are fast enough to generate
T T T T T T T large datasets, though at reduced accuracy, while
ab initio methods are highly accurate but pro-
hibitively expensive, making the generation of
comparably sized training sets intractable. The
PES approximated by a model can be amended
P e PSP by updating a model trained on a large dataset
' " Ewo (kcal/mol) ) ' collected by a specific method (here, using the
TTM2.1-F potential) using a small dataset col-
lected by an alternative method (here, the MB-
pol potential). We perform such PES transfer by
finetuning the pretrained model on 5,000 sam-
ples with Ef computed with the MB-pol potential.
Because of the drastically reduced size of the
dataset, the model was trained in under 28 minutes on 1 NVIDIA V100 GPU. Figure [3|shows E,0
distributions for the TTM2.1-F and MB-pol test sets, with errors shown in Table@} A shiftin Ey,0
towards higher values is seen for the MB-pol potential and is reproduced for both models trained
on MB-pol data. However, the finetuned model showed a ~17% lower error and more accurately
reproduced the Ey,o distribution.

TTM2.1-F
Test Set

MB-pol
Test Set

Figure 3: Predicted Ey, 0 distributions on test sets
computed with the TTM2.1-F (top) and MB-pol
(bottom) potentials.



Table 2: Test-set errors in Eyy,o (kcal/mol).

Hardware Initialization Train Set Test Set MAE RMSE

IPU scratch TTM2.1-F  TTM2.1-F  0.0018 0.0032
GPU scratch MB-pol TTM2.1-F  0.6973  0.7009
GPU pretrain MB-pol TTM2.1-F  0.7033  0.7071
IPU scratch TTM2.1-F  MB-pol 0.7071 0.7112
GPU scratch MB-pol MB-pol 0.0719  0.0924
GPU pretrain MB-pol MB-pol 0.0122  0.0158

4 Conclusions

We demonstrate that pretraining with a very large dataset of molecular structures improves down-
stream tasks such as driving MD simulations as well as transfer learning to a different PES. This
paper is the first to demonstrate the effectiveness of the fine-grained parallelism of the Graphcore
IPU architecture for training molecular GNNGs. Initial training was accomplished over 16 IPUs in 4.2
hours, while finetuning with a small set of non-minima was accomplished in 8.3 hours on a single
NVIDIA V100 GPU and transfer learning with a very small set of minima computed by a different
method was accomplished in only 28 minutes. Pretaining was shown to decrease the amount of
data and time required, as well as reduce hardware requirements, increasing training throughput and
improving accessibility to researchers with limited resources. The pretrained model was not finetuned
for downstream tasks on molecules other than water; moving to a separate area of chemical space, for
example, organic small molecules, could be accomplished by following our workflow, i.e., training
on an open dataset of minima and finetuning for the desired downstream task on a small bespoke
dataset.

Data Availability

The full database of water cluster minima computed with the TTM2.1-F potential is available
for download at https://data.pnnl.gov/group/nodes/dataset/33224. The preprocessed
databases for training, including the database of nonminima computed with the TTM2.1-F potential
and the database of minima computed with the MB-pol potential, dataset split files, trained model
state dictionaries, ASE databases used for MD simulations, and results of data space expansion
and PES transfer analyses are available for download at https://data.pnnl.gov/group/nodes/
dataset/33283.

Code Availability

The codebase used to finetune the pretrained model for the tasks of data space expansion and PES
transfer, along with hyperparameters used in this work, is available athttps://github.com/pnnl/
downstream_mol_gnn.

Impact statement

IPUs show reduced energy consumption compared with GPUs when training neural networks. In
addition, pretraining reduces data and hardware requirements, leading to reduced energy consumption
and increased accessibility to researchers with limited resources.
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