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Abstract

A statistical ensemble of neural networks can be described in terms of a quantum
field theory (NN-QFT correspondence). The infinite-width limit is mapped to a free
field theory, while finite N corrections are mapped to interactions. After reviewing
the correspondence, we will describe how to implement renormalization in this
context and discuss preliminary numerical results for translation-invariant kernels.
A major outcome is that changing the standard deviation of the neural network
weight distribution corresponds to a renormalization flow in the space of networks.

1 Introduction

While neural networks (NN) perform extremely well on several tasks, they generally behave as black
boxes which are hard to interpret [1, 2]. This is a problem for applications where safety can be put in
jeopardy [3], but also if concrete explanations are needed, as in sciences [4–6]. Training is another
concern because it is computationally expensive and has possible convergence issues. Indeed, the
loss function is typically non-convex such that it can be hard to find the global minimum [7, 8]. There
is also no systematic hyperparameter tuning procedure and one has to rely on random scans, possibly
improved with Bayesian and bandit methods [9–12] which results in very high financial [13] and
environmental costs [14–16]. Finally, the question of knowing which functions can be expressed by a
given NN remains open [17, 18]: while universal approximation theorems guarantee existence [19–
24], finding the appropriate architecture for a new task often boils down to trials and errors. Improving
our theoretical understanding of NN is primordial for addressing these issues.
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Physics provides a natural starting point for designing a theory of NN [25–27]. First, thanks to its
effective descriptions, it is not necessary to know the fundamental theory. Second, efficient repre-
sentations of statistical models have been developed (path integrals, Feynman diagrams, statistical
mechanics. . . ). Third, it allows characterizing the collective dynamics of degrees of freedom and
organizing a phenomenon by scales. Applications of physics to machine learning include statistical
physics [7, 28–34], renormalization [35–38], and QFT [39–45].

In this paper, we will review the neural network-quantum field theory (NN-QFT) correspondence
developed in [41, 44] since it provides concrete and testable tools to improve our analytical under-
standing of neural network building and training. This correspondence states that, for a very general
class of architectures, it is possible to associate a quantum field theory (QFT) with a statistical ensem-
ble of NN. We focus on a fully connected NN with a single hidden layer and setup non-perturbative
renormalization group equations (valid for any finite width). The main result is that varying the
standard deviation of the weight distribution induces a renormalization group (RG) flow in the space
of NN. Code is available at: https://github.com/melsophos/nnqft.

2 NN-QFT correspondence

Take a fully connected neural network fθ,N : Rdin → Rdout with one hidden layer of width N :

fθ,N (x) = W1

(
g(W0x+ b0)

)
+ b1, (1)

where g is the non-linear activation function, and the parameters θ = (W0, b0,W1, b1) (weights and
biases) have Gaussian distributions: W0 ∼ N (0, σ2

W /din),W1 ∼ N (0, σ2
W /N), b0, b1 ∼ N (0, σ2

b ).
Consider next a statistical ensemble of neural networks, such that a given neural network is sampled
from the distribution in parameter space: fθ,N ∼ P [θ]. Then, there is a dual description in terms
of another distribution in function space, which is induced by the parameter distribution plus the
architecture: fθ,N ∼ p[f ] [41]. Changing the parameter distribution by training corresponds to
flowing in the function space.

In the large N limit (infinite width), the function distribution becomes a Gaussian process with
kernel K (as a consequence of the central limit theorem) [46]: f ∼ N (0,K). This statement
generalizes to most architecture and training [47]. We denote as S0[f ] the log-probability and as
G

(n)
0 (x1, . . . , xn) := E0[f(x1) · · · f(xn)] the Gaussian expectation value (GEV) for a product of n

fields f(xi). In physics, this setting corresponds to a free QFT. At finite N , the distribution is not a
Gaussian process, and we denote as

∆G(n) := G(n) −G
(n)
0 (2)

the difference between the full expectation value (FEV) G(n)(x1, . . . , xn) := E[f(x1) · · · f(xn)]
and the GEV. The main message of the NN-QFT correspondence is that even at finite N , the log-
probability S[f ] can be designed with non-Gaussian contributions to reproduce the FEVs with
arbitrary precision up to the error bars of the numerical simulations. We denote as Sint[f ] the
non-Gaussian contributions in S[f ]. Furthermore, the 2 fields FEV G(2)(x, y) ≡ K(x, y) is N -
independent and fixed by the NN itself (see Section 3).

This formulation is promising because correlation functions between outputs give a measure of
learning; e.g., the 1-point function ⟨f(x)⟩ ≡ E[f(x)] corresponds to the average prediction for input
x (which is related to the idea of symmetry breaking in QFT [42]). Hence, having a QFT may allow
performing (semi-)analytic predictions in advance of the outcome of the learning process.

Kernels in data-space are typically bi-local [41] such that one can expect non-local interactions.
Moreover, it is not clear what are the symmetries of the inputs and outputs (in the QFT sense) for
general data. With these observations, we follow an approach which can be called NN phenomenology:
1) make assumptions dictated by numerical evidence, 2) write a QFT model to match observations, 3)
use the model to check theoretical facts.

3 Constructing the QFT

The expectation values G(n) can be computed analytically using QFT tools (“theory”) or computed
from a statistical ensemble of neural networks (“measurements”). Hence, we can make an ansatz
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for Sint[f ] and match the parameters by computing enough correlation functions. The choice of this
ansatz especially regarding symmetries and the way the fields are coupled depend on the Gaussian
kernel K. In this paper, we set din = dout = 1 and focus on a translation-invariant activation function:

g(W0x+ b0) =
exp(W0x+ b0)√

exp
[
2
(
σ2
b +

σ2
W

din
x2

)] (3)

such that the Gaussian kernel is [41]:

K(x, y) := σ2
b +KW (x, y), KW (x, y) = σ2

W e
−σ2

W
2din

|x−y|2
. (4)

In order to compute the “experimental” Green functions for a given N , we create nbags distinct
statistical ensembles of nnets networks each [41, 44], and compute Ḡ

(n)
exp as the average of the

(empirical) FEV:

G(n)
exp =

1

nnets

nnets∑
α=1

fα(x1) · · · fα(xn) , (5)

computed in a given bag. We furthermore define

∆G(n)
exp := Ḡ(n)

exp −G
(n)
0 , (6)

and the normalized deviation mn := ∆G
(n)
exp /G

(n)
0 . For the numerical investigations, we consider

the points x(1), . . . , x(6) ∈ {−0.01,−0.006,−0.002, 0.002, 0.006, 0.01} and evaluate the Green
functions for all inequivalent combinations. Moreover, all numerical tests are performed with
σb = 1, σW = 1, nbags = 20, nnets = 30000, and N ∈ {2, 3, 4, 5, 10, 20, 50, 100, 500, 1000}.
Computations ran during one week on the internal cluster of one of our institute. Empirically, we
find that m2 ≈ 0 (the second momentum is almost independent of N ) and m2n = O

(
1
N

)
for n > 1,

the last result meaning that the empirical 2n-cumulant of the distribution G
(2n)
c,exp must be of order

1/Nn−1. The histogram of values for m2 and m4 are given in Figure 1.

The translation invariance of the Gaussian kernel is reminiscent of standard QFTs, where Sint can be
expanded in powers of f coupled at the same point, namely:

Sint[f ] :=

n0∑
n=2

ūn

(2n)!

∫
ddinx f(x)2n, (7)

for some n0 ∈ N. We can check the validity of this ansatz experimentally. Indeed, u4 is nothing
but the magnitude of the lowest order deviation from the GEV in the perturbation theory. At higher
order, this deviation receives many contributions which can be formally resumed, and we denote as
u4(x1, x2, x3, x4) the full (normalized) deviation concerning the GEV:

u4(x1, x2, x3, x4) = − ∆G
(4)
exp(x1, x2, x3, x4)∫

ddinxKW (x, x1)KW (x, x2)KW (x, x3)KW (x, x4)
. (8)

In the QFT literature, u4(x1, x2, x3, x4) is called an effective coupling constant because it includes
all quantum fluctuations. Empirically, focusing on the truncation n0 = 3, we find that u4 is negative
but almost constant and u6 remains small but positive as required for stability. Results for different
σW and N are given below in Figure 2.

4 Renormalization group

In the previous section, we considered an effective field theory able to reproduce FEV corresponding
to a NN ensemble. The RG is a set of techniques allowing to understand the dependency of the
effective theory on a typical observation scale. The machine precision provides an example of such
an observation scale, and we could consider the dependency of the parameters defining the QFT
regarding the machine precision. In this paper, we consider another kind of scaling, induced by the

3



0.006 0.004 0.0020.000 0.002 0.004 0.006 0.008
m2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

co
un

ts

2
3
4
5
10
20
50
100
500
1000

(a) m2.

0 1 2 3 4
m4

0

20

40

60

80

100

120

co
un

ts

2
3
4
5
10
20
50
100
500
1000

(b) m4.

Figure 1: Normalized deviations with respect to the free theory. For m2, values centered around 0
and independent of N . For m4, the values decrease as N increases.

NN itself and called active RG. The motivation stems from the observation that the propagator (4) in
momentum space looks like the usual Gaussian kernel in QFT at low momentum:

KW (p) = (σ2
W )1−

din
2

(
din

2π

) din
2

exp

[
− din

2σ2
W

p2
]
≈ Z−1

0

Λ2 + p2 +O(p2)
. (9)

In the QFT terminology, Λ defines the mass scale, and the large momenta p2 ≫ Λ2 are exponentially
suppressed, blinding the physics beyond scale p2 ∼ Λ2. Hence, in the active RG, Λ (or equivalently
the standard deviation σW ) define the typical momentum scale.

Having defined the notion of scale, we are aiming to construct a smooth interpolation between a
large cut-off regime (called ultraviolet regime) and a small cut-off regime (called infrared regime).
In the large cut-off regime, fluctuations are essentially frozen and the behavior of the network is
mainly fixed by the saddle point of the log-probability S[f ]. On the contrary, in the infrared regime,
fluctuations are integrated out and look as a novel effective physics. The Wetterich equation describes
how the effective description changes with the observation scale and leads to:

Λ
d

dΛ
Γ
(2)
Λ (p,−p) = −1

2

∫
ddinq

(2π)din
Λ
drΛ
dΛ

(q2) Γ
(4)
Λ (p,−p, q,−q)G2

Λ(q
2), (10)

where Γ
(n)
Λ is the n-th derivative of ΓΛ with respect to fcl, which is defined such that:

ΓΛ[fcl] := j · fcl −WΛ[j]−
1

2
fcl · rΛ · fcl, fcl(x) :=

δWΛ

δj
, (11)

where WΛ[j] := E[e− 1
2 f ·rΛ·f+j·f ], the dot denoting the inner-product defined by integrating over

the data space. The regulator rΛ depends on p2 and is designed such that ΓΛ→∞ → S (large cut-off
regime) and ΓΛ→0 ≡ Γ (vanishing cut-off regime), Γ being the full effective action, i.e. the Legendre
transform of the characteristic function E[ej·f ]. The expectation value KW (p) being fixed by the NN,
although both Γ

(2)
Λ (p1, p2) and rΛ(p

2) δ(din)(p1+p2) can be arbitrary functions of the momentum p2,

their sum is constrained to be Λ2 exp
(

p2
1

Λ2

)
δ(din)(p1+p2) for any Λ. Because ΛdrΛ

dΛ (q2) has to select

only a short window of momenta in the vicinity of the scale Λ, the smooth function Γ
(4)
Λ (p,−p, q,−q)

can be expanded in power of q for Λ small enough. At zero order and using the Litim’s regulator:

rΛ(p
2) := α (Λ2 − p2)θ(Λ2 − p2) , (12)

we predict a purely scaling behavior with respect to the standard deviation σW for the zero momenta
function Γ

(4)
Λ (0, 0, 0, 0) =: u4(Λ)δ(0):

σW
du4

dσW
= (4− din)u4 =⇒ log u4 = (4− din) log σW + cst. (13)

This equation can be verified numerically (Figure 2). A similar equation can be derived for u6:
log u6 = (6− 2din) log σW + cst.
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Figure 2: Dependence of u4 in terms of σW , computed numerically and with the flow equation (13).
Parameters: σb = 0, σW ∈ {1.0, 1.5, . . . , 10, 20}, nbags = 30, nnets = 30000.

5 Conclusion

In this paper, we have reviewed the NN-QFT correspondence and described several checks. In
particular, we have derived exact renormalization equations and proved that the standard deviation
σW is a RG flow parameter, before verifying this claim numerically.

Future directions include: increasing din, dout and N expansion, studying the large din limit (large
data), increasing number of hidden layers and extending to non-translation invariant kernels (ReLU. . . )
using the 2PI formalism [48], and finally studying the evolution of the QFT under training.

Broader impacts

The goal of our work is to provide analytical tools for improving the performances of neural networks
and reducing the amount of training and hyperparameter tuning required. As explained in the
introduction, these are important goals given the ongoing climate crisis and the need for fair access to
AI techniques.
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information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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