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Abstract

In this work, we use classical invariant theory to construct a self-attention module
equivariant to 3D rotations and translations. The parameterization is based on the
characterization of SE(3)-equivariant functions via the invariants —scalar products
of vectors and certain subdeterminants. This parameterization can be seen as a
natural extension to a (more straightforward) E(3) equivariant attention based on
invariants —scalar products or pairwise distances of vectors. We evaluate our
model using a toy N-body particle simulation dataset and a real-world dataset of
molecular properties. Our model is easy to implement and it exhibits comparable
performance and running time to state-of-the-art methods.

1 Introduction

Symmetry, serving as a kind of inductive bias, has demonstrated a potential for guiding the design
of neural networks [6], such as the spatial translation equivariance in convolutional neural networks
(CNNs) [27], temporal translation equivariance in recurrent neural networks (RNNs) [14], and
permutation equivariance in graph neural networks (GNNs) [7, 9, 22]. By forcing a neural network
to respect the exact or approximate symmetries underlying the task in hand, researchers typically
restrict the hypothesis class of function which may improve the generalization performance of the
resulting model (like [3, 13]). 3D rotation and translation equivariance is one kind of symmetry
underlying many problems in physics and chemistry, such as N-body particle simulation [23], 3D
molecular structure modeling [2, 21, 36], and point clouds [37]. The group corresponding to this
equivariance is called the Special Euclidean group, or SE(3). Under this equivariance constraint,
global rotations or translations to the input features result on the same transformations applied
to the output. Parameterizing a model respectful of this equivariance is often a desirable choice.
Another group of interest is E(3) which includes reflections as well as rotations and translations.
Interestingly, parameterizing E(3)-equivariant functions is easier than SE(3)-equivariant functions.
Since SE(3) is a subgroup of E(3) the space of E(3)-equivariant functions is a subspace of the space
of SE(3)-equivariant functions.

To the best of our knowledge, SE(3) equivariance is implemented by parameterizing neural networks
in terms of the irreducible representations of the 3D rotation group, SO(3) on tensor spaces (R3)⊗k

[5, 16, 17, 35]. These irreducible representations are computed beforehand (via computing the
Clebsch-Gordan coefficients) and kept fixed. The networks learn how to combine these representations
for each layer (R3)⊗ki 7→ (R3)⊗ki+1 by matching the irreducible representations of (R3)⊗ki with the
ones of (R3)⊗ki+1 making use of Schur’s lemma. Neural networks defined in this form are universal
as long as k can be taken arbitrarily large [12]. However, having large order tensors is not an issue
because the tensors can be compactly represented using spherical harmonics. Previous works tend to
use irreducible representations to construct generalized convolution-like networks [1, 25, 26, 35, 41],
and there is a recent trend to use this approach to build equivariant self-attention modules [16].

Classical invariant theory provides another way to parameterize the space of invariant and equivariant
functions—using the generators of the invariant ring of polynomials [4, 40, 42]. These ideas provide
a simple universal parameterization of the space of equivariant functions that does not require the use
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of irreducible representations nor high order tensors, as long as the invariants are explicitly known
(which is the case of several simple Lie groups). In this work we show how to use this approach
to construct equivariant self-attention modules, and we particularly apply it to SE(3). We note that
some E(d)-equivariant self-attention modules in the literature are implicitly defined in terms of the
invariants such as [8, 24, 29, 30, 32–34]. One possible reason is that the O(d) invariants are the
inner products of the inputs, and therefore it is intuitive to define self-attention mechanisms in those
terms, whereas the SO(d) invariants are slightly less intuitive. Here we make the connection with
invariants explicit and show how to implement it for SE(3) (to best of our knowledge this hasn’t been
done before). As a consequence, a straightforward modification of our model can be used to define
equivariant self-attention modules with respect to Lorentz, Poincaré, symplectic and unitary groups.

Self-attention mechanisms: Given a set of nodes with features, a self-attention module [38] maps
each node into a query and a set of key-value pairs to produce the output. The output is a weighted
sum of the values, and the weight for each value is the similarity between the query and corresponding
key. The implementation of self-attention mechanisms is very simple and it allows for flexible designs
[2, 20, 21]. This is why these models have been widely applied: from language modeling [10, 38] to
graph-based problems [11, 39]. SE(3) and E(3) equivariant self-attention modules have recently been
proposed. [16] proposes an SE(3)-equivariant self-attention module, using irreducible representations
to construct SE(3)-equivariant query, key, and value from input. In E(3)-equivariant modules, the
L2-norm of the difference of position vectors between nodes is a commonly used invariant feature.
Some works compute query, key, and value from scalar features, and integrate the similarity value
between query and key with the invariant feature via either addition [29] or multiplication [8, 30, 34].
[24, 32, 33] adopt a more general form of self-attention where attention weights are mapped directly
from scalar features together with the invariant features.

Our contributions are summarized as follows:

• We show how to parameterize SE(3)-equivariant self-attention modules based on invariant
features, obtaining a model with comparable performance to the state-of-the-art.

• The framework we adopt to build the self-attention modules is flexible, and can be extended
to handle input vectors subject to other simple Lie groups without much effort.

• Code is publicly available at https://github.com/NanChanNN/equi_self_attn.

2 Method

Assume that we are given a set of n nodes with input features denoted as {x⃗i, {h⃗i,t}, {si,ℓ}}ni=1 and
(optionally) edge features {eji}nj,i=1. Here, the features are of three types: x⃗i ∈ R3 denotes the
position vector of node i (subject to rotations and translations), {h⃗i,t}Tt=1 ⊂ R3 denotes a set of
vectors subject to rotations, like velocity vectors, and {si,ℓ}Lℓ=1 ⊂ R denotes a set of scalar features,
like mass or charge. The query q, key k, and value v of the self-attention mechanism are computed
as:

{h⃗(q)
i,t′}, {s

(q)
i,ℓ′} = Φ(q)({h⃗i,t}, {si,ℓ}) (1)

{h⃗(k)
ji,t′}, {s

(k)
ji,ℓ′} = Φ(k)({h⃗j,t} ∪ {x⃗i − x⃗j}, {eji} ∪ {sj,ℓ}) (2)

{h⃗(v)
ji,t′}, {s

(v)
ji,ℓ′} = Φ(v)({h⃗j,t} ∪ {x⃗i − x⃗j}, {eji} ∪ {sj,ℓ}) (3)

where Φ(∗) denotes a rotation-equivariant function (or SO(3)-equivariant function) that takes a set of
vector and scalar features as input, and generates a new set of vector and scalar features:

{v⃗′t′}T
′

t′=1, {s′ℓ′}L
′

ℓ′=1 = Φ(∗)({v⃗t}Tt=1, {sℓ}Lℓ=1) (4)

where the input and output vector features are constrained by rotation equivariance, namely:

{R(v⃗′t′)}, {s′ℓ′} = Φ(∗)({R(v⃗t)}, {sℓ}) (5)

for all R ∈ SO(3). (Note we dropped the ranges of the indices to simplify the notation, but they
coincide with those of (4)). Previous works [16, 35] use irreducible representations to parameterize
the SO(3)-equivariant functions Φ(∗). By contrast, in this work, we apply the formula proposed in

2

https://github.com/NanChanNN/equi_self_attn


[40] to the construction of the functions:

v⃗′t′ =

T∑
t=1

ft′t(v⃗1, . . . , v⃗T , s1, . . . , sL) · v⃗t +
∑

S∈([T ]
2 )

ft′S(v⃗1, . . . , v⃗T , s1, . . . , sL) · v⃗S (6)

sℓ′ = fℓ′(v⃗1, . . . , v⃗T , s1, . . . , sL) (7)

where f∗ are SO(3)-invariant scalar functions (assuming SO(3) acts by multiplication on the vector
inputs, and trivially on the scalar inputs), and v⃗S is the cross product of the two vectors v⃗r v⃗r′ with
r, r′ ∈ S. The SO(3)-invariant functions can be written as a function of the scalar products of the vi
and the 3× 3 subdeterminants of the 3× T matrix of vectors

f∗(v⃗1, . . . , v⃗T , s1, . . . , sL) = g(⟨v⃗i, v⃗j⟩Ti,j=1,det[v⃗1, . . . , v⃗T ]3×3, s1, . . . , sL) (8)

where ⟨·, ·⟩ denotes the inner product, and g is implemented as a multilayer perceptron (MLP) with
a uniform architecture in our model: Input → { LinearLayer() → LayerNorm() → ReLU() →
LinearLayer() } → Output. The query vector qi and key vector kji are constructed by concatenating
vector and scalar features together:

qi = h⃗
(q)
i,1 ⊕ h⃗

(q)
i,2 · · · ⊕ h⃗

(q)
i,T ′ ⊕ s

(q)
i,1 ⊕ s

(q)
i,2 · · · ⊕ s

(q)
i,L′ ∈ R3×T ′+L′

(9)

kji = h⃗
(k)
ji,1 ⊕ h⃗

(k)
ji,2 · · · ⊕ h⃗

(k)
ji,T ′ ⊕ s

(k)
ji,1 ⊕ s

(k)
ji,2 · · · ⊕ s

(k)
ji,L′ ∈ R3×T ′+L′

(10)

After that, the self-attention mechanism is applied as usual. Here we use the dot-product attention:

αji =
exp(⟨qi, kji⟩)∑
j′ exp(⟨qi, kj′i⟩)

(11)

where attention weights αji are applied to each channel of the value features to derive the final result:

h⃗′
i,t′ =

∑
j

αji · h⃗(v)
ji,t′ , s′i,ℓ′ =

∑
j

αji · s(v)ji,ℓ′ (12)

In this way, each node i gets new features {h⃗′
i,t′} and {s′i,ℓ′}, which will be fed into the next layer.

Multi-head attentions Multi-head attention mechanisms can be formulated by evenly partitioning
the set of vector and scalar features into multiple parts, applying the self-attention mechanism
described above to each part, and finally merging results of different parts via concatenation or
summation.

Extensibility This model can be extended to express equivariant functions with respect to other
simple Lie groups by redefining the function Φ(∗) (see [40]).

Scalability One limitation of this model is that the number of pairwise scalar products in the
definition of the invariant functions (8) scales quadratically with the number of vectors, and the
number of subdeterminants scales cubically. A discussion in [40] claims that by using techniques
from matrix completion and rigidity theory one could potentially replace the scalar products by a
subset of size linear in n. For reducing the number of subdeterminants, one possible approach is to
randomly sample the subdeterminants that go into (8).

3 Experiments

N-Body Simulations In this part, we conduct an N-Body simulation experiment to evaluate the
performance of our method. We follow the same experiment procedure as that in [16], and we use
an extension of the dataset from [23] to the 3D space. The input to the model is an N-Body system
consisting of five particles, each of which carries a negative or positive charge, and has position
and velocity vectors in the 3D space. The goal of the experiment is to predict future positions and
velocities of particles in the system after 500 time steps of simulation.

We mainly compare our model to three other models, namely, the SE(3)-Transformer [16], tensor field
networks (TFN) [35], and E(n) equivariant graph neural networks (EGNNs) [32]. We include two

3



Table 1: Quantitative results in the N-Body simulation experiment. SIZE denotes the amount of
trainable parameters. TIME denotes the time to train the model for one epoch in terms of seconds.
MSE x and MSA v denote the mean squared error of predicted positions and velocities, respectively.
Top: Non-equivariant models whose results are taken from [16]. Bottom: Equivariant models.

MODEL SIZE TIME (s) MSE x (· 10−4) MSE v (· 10−3)

Linear - - 691.0 261.0
DeepSet [43] - - 639.0 ± 86.0 246.0 ± 17.0
Set Transformer [28] - - 139.0 ± 4.0 101.0 ± 4.0

SE(3)-Transformer [16] 163K 33.3 ± 0.06 35.8 ± 6.1 60.1 ± 1.5
TFN [35] 86K 23.8 ± 4.2 100.6 ± 5.4 96.5 ± 1.2
EGNNs [32] 134K 5.3 ± 0.4 31.6 ± 1.0 -
Ours-SE(3) 184K 9.9 ± 0.2 34.9 ± 1.8 58.2 ± 3.0
Ours-E(3) 115K 5.9 ± 0.2 31.2 ± 1.2 54.4 ± 1.0

variants of our model: one is equivariant to SE(3) and the other is equivariant to E(3). The E(3) variant
is implemented by simply removing the cross product term in (6) and the subdeterminant term in (8).
Both variants are constructed to have 4 self-attention layers. For the SE(3)-Transformer and TFN,
we adopt the implementation provided by [16]. For the EGNNs, we use the official implementation
provided by its authors [32]. As the official implementation of the EGNNs does not update the input
velocity features and only generates future coordinates as output, we do not test it on predicting future
velocities. We use the same hyperparameter settings as those in [16], except that, for our models
and the EGNNs, we sweep over different learning rates and select the one with the best performance
for each model. Experiments are conducted on a NVIDIA A5000 GPU. Each model is run 5 times
using different seeds with 500 epochs per run. Quantitative results are summarized in Table 1 with
training time per epoch and model size included as well. We also borrow results of non-equivariant
models from [16] to examine the effect of equivariance. These non-equivariant models include a
linear baseline, the DeepSet model [43], and the Set Transformer model [28], whose results are
organized on the top half of Table 1. From the quantitative results, we find that our SE(3) variant
performs similarly to the SE(3)-Transformer, its counterpart using irreducible representations, in
terms of prediction accuracy on future positions and velocities. Our E(3) variant has a comparable
performance in position prediction to the state-of-the-art method, the EGNNs. As the NBody system
is equivariant to E(3), we see advantages of E(3) models over SE(3) ones. Generally, equivariant
models outperform non-equivariant ones by a considerable margin.

QM9 In this part, we evaluate our model on a molecular property regression dataset, the QM9
dataset [31]. This dataset contains 134k small molecules with up to 29 atoms. Each atom is encoded
as a node with a five-dimension one-hot embedding indicating the atom type and a three-dimension
position vector. Chemical bonds between atoms are represented as edges with one-hot embedding
indicating bond types. The task is to predict different chemical properties for each molecule given.
For a detailed description of these chemical properties, readers can refer to [31].

We use the scripts provided by [16] to conduct the experiment. Following common practice, we
tune our architecture on εHOMO and reuse the same architecture on the other tasks. Similar to the
preceding experiment, this experiment includes an SE(3) and E(3) variant of our model. Each variant
has 7 self-attention layers, followed by a sum pooling to aggregate node features. Each self-attention
layer adopts a multi-head attention mechanism with 8 attention heads. We use a batch size of 128 and
an epoch size of 200 to make sure that all models get the same number of updates for fair comparison.
The other hyperparameter settings are kept the same as those in [16]. We measure the performance
on the test set of [1] in 6 regression tasks. Quantitative results are summarized in Table 2. Note that
results of other models are taken from [16], and the top half of Table 2 includes a non-equivariant
model, WaveScatt [19]. The quantitative results are similar to those in the N-body experiment. Our
SE(3) variant delivers a similar performance to that of the SE(3)-Transformer, and our E(3) variant
shows a comparable result to the state-of-the-art. Overall, the non-equivariant model performs worse.
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Table 2: Quantitative results in the QM9 experiment. Models are evaluated by mean absolute error.
Top: Non-equivariant models. Bottom: Equivariant models.

TASK α ∆ε εHOMO εLUMO µ Cv

UNITS bohr3 meV meV meV D cal/mol K

WaveScatt [19] .160 118 85 76 .340 .049

NMP [18] .092 69 43 38 .030 .040
SchNet [33] .235 63 41 34 .033 .033
Cormorant [1] .085 61 34 38 .038 .026
LieConv(T3) [15] .084 49 30 25 .032 .038
TFN [35] .223 58 40 38 .064 .101
SE(3)-Transformer [16] .142 53 35 33 .051 .054
Ours-SE(3) .107 57 38 33 .035 .043
Ours-E(3) .083 48 29 27 .029 .037

4 Conclusion

In this work, we present a self-attention module equivariant to global rotations and translations, which
is constructed based on invariant features. Our experimental results demonstrate that our model
has a comparative performance to other methods that use irreducible representations. In the future,
we would like to explore several directions based on the current work. Current experiments are
on datasets with small inputs, one future direction is to evaluate the model on larger systems. The
current work only empirically compares the difference between our model and those using irreducible
representations, another future direction would be to theoretically analyze such difference.

Broader impact

We believe this work can have impacts on several domains. In physics, our work can be applied to
the simulation of particle behaviors in dynamical systems. Our model can be easily extended to other
simple Lie groups in classical physics including Lorentz, unitary, and symplectic groups, independent
of the dimension. This allows applications to higher-dimensional spaces and more complicated
physical problems. In biology and medicine, our work can be applied to learn representations of
macro- or micro- molecules effectively. The learned representations can then be used in many
downstream tasks, such as drug chemical property prediction, molecule generation, and protein
folding. The simple implementation of our model may also allow for its integration into existing
state-of-the-art algorithms in biology.
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(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Mentioned in the anonymous reposi-

tory.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Mentioned in the anonymous repository.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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