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Abstract

Diffusion models based on stochastic differential equations (SDEs) gradually
perturb a data distribution p(x) over time by adding noise to it. A neural network
is trained to approximate the score ∇x log pt(x) at time t, which can be used to
reverse the corruption process. In this paper, we focus on learning the score field
that is associated with the time evolution according to a physics operator in the
presence of natural non-deterministic physical processes like diffusion. A decisive
difference to previous methods is that the SDE underlying our approach transforms
the state of a physical system to another state at a later time. For that purpose, we
replace the drift of the underlying SDE formulation with a differentiable simulator
or a neural network approximation of the physics. At the core of our method,
we optimize the so-called probability flow ODE to fit a training set of simulation
trajectories inside an ODE solver and solve the reverse-time SDE for inference to
sample plausible trajectories that evolve towards a given end state.

1 Introduction

Many physical systems are time-reversible on a microscopic scale. For example, a continuous
material can be represented by a collection of interacting particles [Gurtin, 1982, Blanc et al., 2002]
based on which we can predict future states of the material. We can also compute earlier states,
meaning we can evolve the simulation backwards in time [Martyna et al., 1996]. When taking a
macroscopic perspective, we only know the average quantities within specific regions [Farlow, 1993],
which constitutes a loss of information. It is only then that time-reversibility is no longer possible,
since many macroscopic and microscopic initial states exist that evolve to yield the same macroscopic
state.

In the following, we target inverse problems to reconstruct the distribution of initial macroscopic
states for a given end state. This genuinely tough problem has applications in many areas of
scientific machine learning [Zhou et al., 1996, Gómez-Bombarelli et al., 2018, Delaquis et al.,
2018, Lim and Psaltis, 2022], and existing methods lack tractable approaches to represent and
sample the distribution of states. We address this issue by leveraging continuous approaches for
diffusion models in the context of physical simulations. In particular, our work builds on the reverse-
diffusion theorem [Anderson, 1982]. Given the functions f(·, t) : Rd → Rd, called drift, and
g(·) : R → R, called diffusion, it can be shown that under mild conditions, for the forward stochastic
differential equation (SDE) dx = f(x, t)dt + g(t)dw there is a corresponding reverse-time SDE
dx = [f(x, t) − g(t)2∇x log pt(x)]dt + g(t)dw̃. In particular, this means that given a marginal
distribution of states p0(x) at time t = 0 and pT (x) at t = T such that the forward SDE transforms
p0(x) to pT (x), then the reverse-time SDE runs backward in time and transforms pT (x) into p0(x).
The term ∇x log pt(x) is called the score.
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Figure 1: Overview: we employ a physics simulator P to learn the score field ∇x log pt(x) with a
neural network sθ in the presence of noise or uncertainties. The trained model allows for sampling
the posterior of p0, i.e. different states that explain an observation pT , by solving the reverse-time
SDE or obtaining a maximum likelihood solution from the probability flow ODE.

This theorem is a central building block for SDE-based diffusion models and denoising score matching
[Song et al., 2021b, Jolicoeur-Martineau et al., 2021], which parameterize the drift and diffusion in
such a way that the forward SDE corrupts the data and transforms it into random noise. By training a
neural network to represent the score, the reverse-time SDE can be deployed as a generative model,
which transforms samples from random noise pT (x) to the data distribution p0(x).

In this paper, we show that a similar methodology can likewise be employed to model physical
processes. We replace the drift f(x, t) by a physics model P(x) : Rd → Rd, which is implemented
by a differentiable solver or a neural network that represent the dynamics of a physical system, thus
deeply integrating physical knowledge into our method. The end state at t = T on which the forward
SDE acts is not fully destroyed by the diffusion g(t), but instead, the noise acts as a perturbation of
the system state over time. An overview of our method is shown in figure 1.

2 Method

We choose to model the time evolution of the system by a stochastic differential equation

dx = P(x)dt+ g(t)dw, (1)

with diffusion process g(·) : R → R that perturbs the states. We consider a training set of N

trajectories
{
(xti,n)

M
i=0

}N

n=1
with time discretization 0 ≤ t0 < ... < tM ≤ T sampled from this

SDE.

In line with previous work in score-based generative modelling [Song and Ermon, 2019, Song et al.,
2021b], we approximate the score ∇x log pt(x) of the marginal likelihoods by a neural network
sθ(x, t). We optimize sθ(x, t) via maximum likelihood training of the probability flow ODE

dx =

[
P(x)− 1

2
g2(t)sθ(x, t)

]
dt. (2)

Specifically, we maximize a variational lower bound of the likelihood objective by minimizing the L2
distance between the deterministic trajectories of the probability flow ODE and the SDE trajectories{
(xti,n)

M
i=0

}N

n=1
. See Song et al. [2021a], Huang et al. [2021] for details on the equivalency of score

matching and maximum likelihood. In contrast to previous work, our method deeply integrates a
prior about the physical system in the form of the simulation operator P(x) into the training process.

Given an end state xT , we can solve the probability flow backwards in time using the trained score
function sθ(x, t) to obtain a trajectory (xpred

ti )Mi=1. However, this will only give a single solution and
thus not allow for sampling from the posterior p(x |xT ). Therefore, we simulate trajectories from the
reverse-time SDE

dx =
[
P(x)− g2(t)sθ(x, t)

]
dt+ g(t)dw. (3)
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When sθ(x, t) ≡ ∇x log pt(x), then the evolution of marginal probabilities pt(x) for this SDE is
the same as for the probability flow ODE equation 2 [Song et al., 2021b]. Moreover, by the reverse-
diffusion theorem [Anderson, 1982], SDE equation 3 is the time-reverse of the physical system SDE
from equation 1.

In the following, we refer to the integration of the physics model P(x) into the score-based modelling
approach as score matching via differentiable physics, or SMDP in short. We denote trajectories from
the probability flow ODE by SMDP-ODE, and those obtained by simulating the reverse-time SDE by
SMDP-SDE.

Algorithm 1 SMDP-ODE, SMDP-SDE

Require: xtM , {tm}Mm=0, {gtm}
M
m=0

1: for m←M to 1 do
2: p← P(xtm)
3: s← − g2tmsθ(xtm , tm)/2
4: if SMDP-ODE then
5: xtm−1 ← xtm−(tm− tm−1) ·(p+s)

6: if SMDP-SDE then
7: xtm−1 ← xtm−(tm−tm−1)·(p+2s)
8: z ∼ N (0, I)
9: xtm−1 ← xtm−1 +gtm

√
tm − tm−1z

10: return xt0

Training and Inference Algorithm 1 gives an
overview of SMDP inference for the ODE as
well as the SDE variant when using the explicit
Euler method as ODE solver. For simplicity, we
employ the explicit Euler method for training
and backpropagate gradients through multiple
solver steps when computing the ODE trajectory
in equation (2) to obtain updates for θ. We also
refer to this procedure as unrolling the dynamics.
Our training setup is similar to Um et al. [2020],
which was originally developed for training cor-
rection functions in the context of controlling
numerical errors for physical simulations. In
particular, in our implementation, we consider
a sliding window for unrolling the dynamics,
which makes our training very flexible, i.e. we can consider single-step updates as well as unrolling
the entire simulation.

3 Experiments: Heat Equation

We consider the heat equation ∂u
∂t = α∆u, which plays a fundamental role in many physical systems.

Here, we set the diffusivity constant to α = 1 and initial conditions at t = 0 are generated from
Gaussian random fields with n = 4 at resolution 32×32. We simulate the heat diffusion using spectral
methods until t = 0.2 with a fixed number of simulation steps M = 32 using the Euler-Mayurama
method with g ≡ 0.1.

Our training data set consists of 2.500 initial conditions and trajectories. The test set is comprised of
500 initial conditions and their corresponding end states solved directly without any noise.

Training We consider a small ResNet-like architecture based on an encoder and decoder part as
representation for the score function sθ(x, t). The physics model P is implemented via differentiable
programming in JAX [Schoenholz and Cubuk, 2020].

For better comparison with the baseline methods, these are trained with a Gaussian random noise
with σ2 = 0.1 added to the inputs. This noise is also added to the initial states during testing of all
networks, including SMDP-ODE and SMDP-SDE.

Figure 2: Heat diffusion case. We simulate a Gaussian random field at t = 0 forwards in time
until t = 0.2. Given sθ we can either solve the probability flow ODE or simulate trajectories of the
reverse-time SDE to obtain solutions for the state at t = 0.
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Method MSE [10−5] ↓ Spectral
error ↓ Full

posterior

SMDP-ODE 0.74 3.62 ✗
SMDP-SDE 5.56 0.56 ✓

ResNet-S 2.17 1.67 ✗
ResNet-P 2.30 1.09 ✗
BNN-S 3.47× 102 1.25 ✓
BNN-P 3.81× 102 0.99 ✓
FNO-S 2.54× 104 1.60 ✗
FNO-P 2.50× 104 1.47 ✗
HeatGen 1.39 4.45 ✗
HeatGen+noise 4.45 3.24 ✓

Table 1: Evaluation of reconstruction MSE and spectral
error for SMDP and baselines. The column full poste-
rior indicates whether models yield point estimates or
allow to sample from the posterior.
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Figure 3: Spectral density on different
scales, the red line indicating ground
truth. The closer a method is to the
ground truth, the better it produces struc-
tures of a similar scale.

Baseline methods As baseline methods, we consider the ResNet-like architecture from above, in
addition to a Bayesian neural network (BNN) based on a U-Net architecture with spatial dropout
[Mueller et al., 2022], as well as a Fourier neural operator (FNO) network [Li et al., 2020]. For each
of these three methods, we consider two variants: the first variant is trained with a supervised loss, i.e.
the training data consists of pairs (x0,xT ) with initial state x0 and end state xT . The supervised loss
corresponds to the squared L2 distance between the network prediction xpred

0 and the ground truth,
i.e. ||xpred

0 − x0||22. For the second variant, the reconstruction loss, we rely on the differentiable
solver and only make use of the end state xT such that the loss becomes ||P(xpred

0 ;T )− xT ||22, i.e
we simulate the network output forward in time using P to obtain a state at t = T , which we compare
to the desired end state xT . We denote the supervised variant by S and the physics-based one by
P. Additionally, we consider an adopted generative model from Rissanen et al. [2022], denoted by
HeatGen. We train this network similarly to SMDP-ODE, but without the solver P , such that the
network has to learn the score and the physics at the same time.

Reconstruction accuracy vs. fitting the data manifold We give an evaluation of our method and
the baselines by considering the reconstruction MSE on the test set: how well a predicted initial state
xpred
0 that is simulated forward in time yields states that correspond to the reference end state xT

in terms of MSE. This metric has the disadvantage that it does not measure how well the prediction
matches the training data manifold, i.e. for this case whether the prediction resembles the statistics
of the Gaussian random field. For that reason, we additionally compare the power spectral density
of the states as the spectral loss. The corresponding measurements are given in table 1, which
show that our method SMDP-ODE performs best in terms of the reconstruction MSE. However,
solutions obtained by SMDP-ODE are very smooth and do not contain the small-scale structures of
the references, which is reflected in a high spectral error that is also visually prominent, as shown
in figure 3. SMDP-SDE on the other hand performs very well in terms of spectral error and yields
visually convincing solutions with only a slight increase in the reconstruction loss. We note that there
is a natural tradeoff between both metrics, and SMDP-ODE and SMDP-SDE perform best for both
cases respectively while using the same set of weights.

4 Conclusion

We presented first results of SMDP, a derivative of score matching in the context of physical simula-
tions and differentiable physics. We demonstrated the versatility of SMDP with two variants: while
the neural ODE variant focuses on high MSE accuracies, the neural SDE variant allows for sampling
the posterior and yields an improved coverage of the target data manifold. Our work presents a first
step towards combining physics problems with score matching that has the potential for applications
in many areas of numerical simulations.
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Broader Impact
Our work targets generating simulations with score-based generative models. While numerical
simulations are a broad field that has numerous applications with a positive impact on society, they
could potentially also be used with malicious intent, e.g., for manufacturing weapons.
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