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Abstract

In the era of big astronomical surveys, our ability to leverage artificial intelligence
algorithms simultaneously for multiple datasets will open new avenues for scientific
discovery. Unfortunately, simply training a deep neural network on images from
one data domain often leads to very poor performance on any other dataset. Here
we develop a Universal Domain Adaptation method DeepAstroUDA, capable of
performing semi-supervised domain alignment that can be applied to datasets with
different types of class overlap. Extra classes can be present in any of the two
datasets, and the method can even be used in the presence of unknown classes.
For the first time, we demonstrate the successful use of domain adaptation on two
very different observational datasets (from SDSS and DECaLS). We show that
our method is capable of bridging the gap between two astronomical surveys, and
also performs well for anomaly detection and clustering of unknown data in the
unlabeled dataset. We apply our model to two examples of galaxy morphology
classification tasks with anomaly detection: 1) classifying spiral and elliptical
galaxies with detection of merging galaxies (three classes including one unknown

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



anomaly class); 2) a more granular problem where the classes describe more
detailed morphological properties of galaxies, with the detection of gravitational
lenses (ten classes including one unknown anomaly class).

1 Introduction

With big datasets from astronomical surveys like the Dark Energy Survey [DES; 5] or the Vera Rubin
Legacy Survey of space and time [LSST; 9], development of artificial intelligence (AI) algorithms
capable of combining knowledge from different telescopes will open doors to many new insights.
Unfortunately, standard deep learning algorithms are not well suited for work on multiple datasets.
Domain adaptation (DA) research includes the development of methods designed to enable work on
multiple datasets at the same time, by allowing the model to learn and use only features present in
both datasets [4, 18, 20], thus aligning two latent data distributions. In astronomy, DA has first been
used in combination with active learning in [16], for Supernova Ia classification and identification of
Mars landforms. Then, in [2], authors use DA for identifying merging galaxies in simulated Sloan
Digital Sky Survey [SDSS; 21] mock images and and real SDSS data. In [3], authors use DA for
galaxy morphology classification in simulated mock LSST data, and as a tool to mitigate possible
catastrophic perturbation-driven errors. Unfortunately, even when two datasets are quite similar, like
simulated mock images mimicking some telescope and real observations from the same telescope,
DA methods can be quite hard to fine tune. Because of this, the development of DA methods that can
be used on multiple observational datasets exhibiting even larger differences has not previously been
attempted. Furthermore, when working with real astronomical data, researchers will not always be
able to work with fully curated datasets; there may be partial overlap of classes, unknown classes
or anomalies in one or both domains, etc. Most standard DA methods try to align the entire data
distributions, so the presence of any kind of non-overlapping classes will not allow those DA methods
to be applied successfully.

In this work we develop a semi-supervised universal DA method DeepAstroUDA that can handle
the presence of non-overlapping classes in any of the two data domains and can even detect and
cluster unknown classes. As with all DA methods, it requires two datasets: the source domain,
which contains labeled images, and the target domain, which can be unlabeled as the labels are
not used during model training. Our aim is the development of a universal DA method that can be
applied to a plethora of astronomical tasks and can successfully perform DA on both simulated and
observational data. We apply our method to two observational datasets (available via the Galaxy
Zoo project [12, 11, 19]) and show that it is capable of successfully bridging even two substantially
different datasets and even discovering new unknown classes in the unlabeled target domain. We
focus on galaxy morphology classification with anomaly detection: 1) classification of spiral and
elliptical galaxies, with the discovery of merging galaxies, and 2) more granular galaxy morphology
classification with sub-classes that more closely describe galaxy shapes (based on attributes such as
ellipticity, bulge prominence, presence of a bar in spiral galaxies etc.) and detection of gravitationally
lensed galaxies.

2 Methods

In this work, we introduce a semi-supervised universal DA method DeepAstroUDA. Domain alignment
and clustering of similar objects into classes is performed via two loss functions: adaptive clustering
and entropy separation1.

Adaptive Clustering (AC) Loss: The main idea of this type of semi-supervised clustering [10] is
to group unlabeled target domain samples into clusters by computing pairwise similarities among
their extracted features, then force the class labels predicted by the classifier for samples with large
pairwise feature similarities to be consistent. For a pair of unlabeled target samples x1 and x2 we
predict a pairwise similarity label by using the output prediction vectors p1 and p2 and rank ordering
their feature elements [7]. We then require the top k elements (k = 3 for 3-class problem and k = 7
for 10-class problem, for computational efficiency) to decide that the paired samples belong to the
same class, which is denoted by similarity label s12 = 1; otherwise, s12 = 0. For the labeled source
domain images, we use their class labels to generate similarity labels. We also calculate a similarity

1Code is publicly available at: https://github.com/deepskies/DeepAstroUDA
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score between samples as p⊤
1 p2. Finally, we can write the AC loss as a binary cross-entropy loss,

where similarity labels are used as ground truth labels:

LAC = −
∑
i∈B

∑
j∈bt

sij log(p
⊤
i pj) + (1− sij)log(1− p⊤

i pj), (1)

where B is the bank that contains samples from all previous source and target batches, and bt is
the current target batch [13]. By comparing similarities between unlabeled target samples from the
current target batch to all elements stored in the bank, current target samples are pushed towards
source and target samples with which they share the most similar features.

Entropy Separation (ES) Loss: The objective of the ES loss is to align classes present in both
datasets, while pushing away the classes present only in one of the domains [13]. This is possible
because unknown samples often do not share features with known samples, which leads to larger
entropies for unknown samples compared to entropies between shared classes [22]. Therefore, the
entropy can be used to decide the boundary between known and unknown samples. If we denote the
mean entropy of the classifier output pi of sample i from the target batch bt as H(pi), we can define
a boundary ρ around the entropy value so that LES(pi) = −|H(pi) − ρ| when |H(pi) − ρ| > m,
and LES = 0 otherwise. Here m is a confidence threshold around the boundary ρ, which is used to
decide if we are confident about whether a particular sample belongs in a known or unknown class.
Only those samples that are far enough from the entropy boundary ρ will be moved towards known
classes or pushed away as an unknown class. The boundary ρ and confidence threshold m start from
preset values (determined from experiments), but are actively fine-tuned during training. Finally, the
total ES loss is:

LES =
1

|bt|
∑
i∈bt

LES(pi). (2)

Total Loss: The main classification loss for the labeled source domain is the weighted cross-entropy
(CE) loss. Combining this with the other terms described above gives the total loss, which is the
objective of the model training: L = LCE + λ(LAC + LES). The importance of the DA loss terms
is governed by the weight parameter λ. We find that λ = 0.005 achieves the best model performance
on our datasets.

We use ResNet50 [8] network and train it with early stopping that monitors the change in accuracy and
stops the training when there is no improvement in 12 epochs. Domain-specific batch normalization
is used to eliminates domain style information leakage. The model is trained using stochastic gradient
descent with Nesterov momentum [14] and an initial learning rate of 0.001 (with an inverse learning
rate scheduler, whereby the learning rate is decayed by a factor of 0.1 every 10 epochs). We train our
models on 4 NVIDIA RTX A6000 GPUs (available from Google Colab and LambdaLabs), and on
average the training converges in ≈5 hours.

3 Data and Experiments

In this work we apply our method to 3-class and 10-class experiments. We use two datasets from the
Galaxy Zoo project [GZ; 12, 19], which used crowd sourcing to create labels for millions of galaxies
through a web-based interface: source domain dataset from GZ2 SDSS [19] images, and target
domain dataset from GZ3 DECaLS2 [17], that uses DESI Legacy Imaging Surveys [6]. Specifically,
we use a subset of this dataset (with images that passed more rigorous vote filtering) named Galaxy10
DECaLS3. For our 10-class experiment, we use 9 classes from this dataset (disturbed, merging, round
smooth, cigar shaped smooth, barred spiral, unbarred tight spiral, unbarred loose spiral, edge-on
without bulge, edge-on with bulge) and add one more class from the full GZ3 DECaLS dataset,
gravitationally lensed galaxies, which we will treat as an unknown class. We use the same labels for
our source GZ2 SDSS dataset. Furthermore, we also test our method on a simple 3-class problem
with spiral, elliptical (known classes), and merging galaxies (unknown class). These correspond,
respectively, to the barred spiral, round smooth and merging classes from the 10-class experiment. In
Figure 1 we show example images from both source and target domains. In this work, we demonstrate
the performance of our model on two Open DA problems, where the unlabeled target domain contains

2Current publicly available GZ datasets can be found at https://data.galaxyzoo.org
3Galaxy10 data is available at https://astronn.readthedocs.io/en/latest/galaxy10.html
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Table 1: Accuracies for ResNet50 on SDSS (source) and DECaLS (target) test data (3-class and
10-class problem) when training without DA (top row) and with DA (bottom row). Inclusion of DA
increases accuracy for both source and target data in both experiments.

3-class 10-class
Train. type Source Target Source Target
No DA 0.81 0.56 0.77 0.43
DA 0.84 0.82 0.82 0.79

one unknown class, not present in the labeled source domain. Both SDSS and DECaLS data include
three filter images (i, r, g). We use SExtractor [1] to determine the center and radius of objects
in the downloaded images, and then crop images to 256 × 256 pixels, using the extracted object
properties to ensure no pertinent parts of the image have been inappropriately removed. The source
and target datasets each contain ≈6.5k images for our 3-class problem, and ≈20k images for out
10-class problem. All data in our experiments are normalized to pixel values [0, 1] and then divided
into training, validation, and test sets in proportions 60% : 20% : 20%.

Figure 1: Example images from the 3-class problem. Source domain SDSS data (spiral and elliptical
classes) is given in the top row, while the target domain DECaLS data (spiral, elliptical, and merging
classes) is in the bottom row. We give true labels in the top left corner of each image and predicted
labels in the top right corner (when trained with DA). These examples show the most often correctly
and incorrectly classified objects in our experiments.

4 Results

In Table 1 we report accuracies for the source and target test sets: normal training without any DA, i.e.
training with just LCE on the source domain (top row), and then DeepAstroUDA training with DA
(bottom row). Using DA improves performance in both data domains. Aligning the data distributions
allows the model to work well on unlabeled target data. The use of domain-invariant features makes
training harder, preventing the model from overfitting on the source domain to allow it to train for
longer and increase performance even on the labeled source data. In the top row of Figure 2, we
show how the target domain accuracies in the 3-class problem change during training, as well as
how the three different loss terms evolve. The bottom row shows the training target accuracies for
the 10-class problem and a target test set confusion matrix that indicates the similarities between
some known galaxy classes. Finally, in Figure 3, we show t-SNE plots [15] of the latent space of
the model trained on the 3-class problem, to better illustrate the effects of DA training. Our results
show that DeepAstroUDA can: 1) successfully be used on difficult domain shift problems such as
astronomical data originating from different surveys, and 2) handle any type of domain overlap and
perform in the presence of unknown classes, which can be used for anomaly detection tasks like
searching for merging galaxies, gravitational lenses, etc. While we focus on cross-survey Open DA
problems (unknown class present in the target domain) in this paper, we will explore and present
results of our method on different types of domain shift problems in our future work.
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Figure 2: Top (3-class): left: target domain accuracies during training (elliptical in violet, spiral in
navy and unknown merger class in yellow); right: loss functions during training (CE loss in yellow,
AC loss in green, ES loss in dark green). Vertical dashed lines on the left plot show epochs in which
hyperparameters of the ES loss were fine-tuned. Bottom (10-class): left: target domain mean known
class accuracy (blue), unknown gravitational lens class accuracy (red), and mean accuracy for all
classes (black dashed line); right: target test set confusion matrix to illustrate confusion between
morphologically similar classes (disturbed (0), merging (1), round smooth (2), cigar shaped smooth
(3), barred spiral (4), unbarred tight spiral (5), unbarred loose spiral (6), edge-on without bulge (7),
edge-on with bulge (8), lenses (9)).

Figure 3: t-SNE plots of the latent space of the model trained on the 3-class problem. Without DA
(left) the target domain (empty circles) remains completely separate from the source (filled circles),
while using DA (right) aligns classes correctly, which allows the model to perform well in both
domains. Furthermore, we can see that the unknown merger class (yellow) in the target domain is
separated from the rest and moved to the outskirts.
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Broader Impact

Our paper introduces a universal DA method that can handle any type of overlap between different
astronomical datasets and is applicable not only to multiple types of problems in astrophysics and
cosmology, but also to other scientific domains and beyond. This research will impact the wider
scientific community, since work with data from simulations and multiple telescopes or experiments
is often present in many scientific applications. This is also relevant for the development of methods
trained on simulations or old observations that work during new observations in real time, which is
crucial for fast detection of transient phenomena, anomalies or real-time data cataloging and dataset
creation.
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