
Stabilization and Acceleration of CFD Simulation by
Controlling Relaxation Factor Based on Residues: An

SNN Based Approach

Mithilesh Maurya, Dighanchal Banerjee, Sounak Dey, Dilshad Ahmad
TCS Research, India

{mk.maurya|dighanchal.b|sounak.d|dilshad.ahmad}@tcs.com

Abstract

Computational Fluid Dynamics (CFD) simulation involves the solution of a sparse
system of linear equations. Faster convergence to a physically meaningful CFD
simulation result of steady-state physics depends largely on the choice of optimum
value of the under-relaxation factor (URF) and continuous manual monitoring
of simulation residues. In this paper, we present an algorithm for classifying
simulation convergence (or divergence) based on the residues using a spiking
neural network (SNN) and a control logic. This algorithm maintains optimum
URF throughout the simulation process and ensure accelerated convergence of
the simulation. The algorithm is also able to stabilize and bring back a diverging
simulation to the converging range automatically without manual intervention. To
the best of our knowledge, SNN is used for the first time to solve such complex
classification problem and it achieves an accuracy of 92.4% to detect the divergent
cases. When tested on two steady-state incompressible CFD problems, our solution
is able to stabilize every diverging simulation and accelerate the simulation time by
at least 10% compared to a constant value of URF.

1 Introduction

System of linear equations governing the model of solid-fluid interactions in Computational Fluid
Dynamics (CFD) domain are usually solved using iterative methods [6, 19, 7] to reach to an acceptable
numerical solution. This iterative process is time consuming, compute intensive, and the solution
does not guarantee convergence to a physically meaningful solution for a given set of simulation
parameters. This results into huge waste of man hours and computation resource. Though controlling
factors such as under relaxation factor (URF) and convergence indicators such as simulation residue
history (SRH) are tuned to ensure convergence, but it requires manual intervention to select suitable
values. Thus, an automatic monitoring mechanism of residue history (to interpret convergence or
divergence) and a subsequent control logic to auto-tune the URF would help in: (i) stabilising a
diverging simulation, (ii) reaching faster convergence by accelerating converging simulation.

Fuzzy logic based approaches [15, 3] and Expression based methods [12, 20] have been applied
to calculate & control URF but they tend to increase the computation time and are not applicable
across all classes of CFD problems. RL based acceleration methods [13] for CFD simulations are
computationally expensive and slow. Looking at the compute-intensive nature of simulation and to
cater the requirement of early detection of divergence from as less data as possible, use of Spiking
Neural Networks (SNN), a 3rd generation ML framework inspired from functionalities of mammalian
brain, can be a good choice to reach to a useful solution [14]. SNNs are comparatively faster to
learn from sparse data and are far less compute & power intensive. SNNs achieve this through
asynchronous event handling and co-location of memory and computation [1, 4, 22].

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

In this paper, we propose an improved and robust solution to stabilize diverging CFD simulations and
accelerate the converging CFD simulation by keeping the URF to its optimum value. The residual
value over time is treated as a continuous time series. Current data of a fixed size window from this
time series is passed to the SNN to be classified either as diverging or as converging. Depending on
the classification, a control logic is used to change the URF. The classifier and control logic work
together without interfering with the CFD simulation i.e. the process is non-invasive and works
in parallel to the simulation. We demonstrate the efficacy of our approach via two steady-state
incompressible CFD problems namely Backward Facing Step and Flow inside Tundish. We verified
our findings by running the algorithm with OpenFOAM [18] and Ansys Fluent [11] simulators. We
found that (i) the SNN is able to detect the divergent cases with 92.4% accuracy (with window size =
30), (ii) our solution is able to stabilize each and every diverging simulations and finally, (iii) it is
also able to accelerate the simulation time by at least 10% compared to a fixed URF value.

2 Spiking Neural Network: Methodology & Architecture

Figure 1: Architecture of the reservoir based SNN classifier
As shown in Fig. 1, proposed spiking neural network architecture comprises of three main blocks: (i)
Spike encoder, (ii) Spiking reservoir and (iii) Classifier.

The Spike Encoder. Unlike classical ANNs, SNNs can work with spike inputs only. Spike Encoder
block converts real-valued time series of residual values, denoted by F(t) in Fig. 1, into representative
spike trains. Of the two popular soft spike encoding techniques namely rate encoding (information
is encoded in terms of the number or rate of firing of a neuron) and temporal encoding (encodes
information based on the temporal distance between spikes i.e. inter-spike interval) here we have
used the latter as it is more efficient to encode temporal signal than the former.

The Spiking Reservoir. The encoded spike trains are fed into the second block of our architecture
namely, a reservoir based SNN. The reservoir is a sparse and recurrently connected population of
excitatory and inhibitory neurons, where each neuron is connected to a set of other neurons in the
same population in a probabilistic fashion such that resulting dynamics of the network remains
stable. Reservoir based SNN is best suited for extracting spatio-temporal features [10, 5, 21]. The
sparse input and recurrent weights with directed cycles act as a non-linear random projection of the
input feature space to a high dimensional spatio-temporal embedding space, where implicit temporal
features become explicit. These embeddings are captured as neuronal traces of the reservoir neurons.
In the reservoir, we have kept 400 excitatory and 100 inhibitory neurons, keeping in mind the 4:1
ratio in its biological counterpart. We have used Leaky Integrate & Fire (LIF) [8] neurons here with
the membrane decay constant = 30. We have used a time-shifted version of F (t), namely F (t− n),
and feed it into the reservoir after encoding, so that the activity of the reservoir always remain above
an acceptable threshold. Here, n lies in range [5,10].

Classifier: The neuronal trace values of the excitatory reservoir neurons are fed into a Logistic
Regression based classifier that is trained with corresponding class labels. Once training is done,
the neuronal trace values corresponding to testing data are fed into this classifier to get the final
classification result.

3 Control Logic and Simulation
Control Logic. The rule for changing the URF depends on the output of the classifier. For a diverging
simulation, the URF is reduced in steps of 20% so that simulation stabilizes quickly. For converging
simulation, the URF is increased in steps of 1% as we want to accelerate the simulation slowly.

Simulation Stabilization & Acceleration. The integrated view of classifier & control algorithm
along with the simulation is shown in Fig. 2. The simulation for a defined CFD model starts with a

2

small URF value and is continuously monitored via the SRH log file. We discard first 5 iterations (as
they might not be stable) and the SNN classifier takes SR values in a window of next 30 iterations as
a time series to predict its convergence behaviour. The CFD model is updated with a new value of
URF based on the aforementioned control logic and the same loop of iteration and classification goes
on until the system reaches convergence. The activities in Green and Blue block are independent of
each other.

Figure 2: Integrated workflow of classifier and control (Blue block) with the simulation (Green block)

4 Experimental setup, Results & Discussion

Dataset Generation. Ten benchmark and validated cases of CFD are selected from OpenFOAM in
order to generate training data. All the model variables corresponding to each of these CFD cases
were kept constant except the URF of pressure variable which is changed in steps of 0.1 in the range
[0.1, 1.8]. Each simulation terminal output is recorded in a log file and is parsed to get the SRH
that has data for initial and final residue of the flow field variables. The recorded data is labelled as

“converging” or “diverging” classes as per simulation outcome. A total of 140 converging and 140
diverging SRH data is generated. Number of iterations in each of this residue data vary from few
hundred to thousands for diverging and converging simulations respectively. Each of these data files
are split into smaller SRH data of 30 iterations, with the same labelling as that of the series. A total
of 1200 such windowed data sets for each classes were taken for training and testing.

Training and Performance of SNN classifier. 900 samples of each class from the dataset were used
for training and rest 300 were used for testing the SNN classifier. We have considered 9 features
of CFD simulation namely, initial and final residue of pressure, velocity (x, y) components and
local, global and cumulative continuity. Each sample time series from training set is segmented into
windows of a particular length. To decide upon the optimal length of the window, we have trained the
network with data of different window sizes and measured the corresponding testing accuracy. As
shown in Fig 4f, window size 50 provides highest accuracy 94.9% but performance does not degrade
much with reducing window size, till it reaches low values such as 25 or 20. Lower the window size,
faster will be the recognition of divergent time series. We have taken window size = 30 as optimal for
our experiments. The network has achieved an accuracy of 92.4%. Also the time for prediction of
one label is around 8 seconds running on a 32 GB RAM CPU machine.

(a) (b)

Figure 3: (a) Backward facing step geometry - a developed steady turbulent flow of air enters through
the inlet and comes out through outlet. (b) Tundish geometry - molten steel enters through the inlet
and comes out of the outlet, dam and weir help in removing impurities.

CFD Test Cases. We have tested the proposed system on two different steady-state incompressible
CFD problems namely, Backward-facing step [17] and Flow inside a Tundish [16] implemented in
OpenFOAM v7 [18] and Ansys Fluent v19 [11]. A Backward Facing Step is widely known for its
application in the studies on turbulence in internal flows (refer Fig. 3a). A Tundish is a reservoir in
continuous casting unit of steel(refer Fig. 3b).

3

(a) Backward facing step problem solved using Fluent
starting with pressure URF=0.7

(b) Flow inside Tundish problem solved using Open-
FOAM starting with pressure URF=1

(c) Backward facing step problem solved using Fluent starting with
pressure URF=0.3

(d) Scaled plot of (c) to show the
simulation acceleration

(e) Backward facing step problem solved using OpenFOAM
starting with pressure URF=0.2

(f) Variation of classifier accuracy
with different window sizes.

Figure 4: CFD simulation performance with and without proposed model.

Results and Discussion: As shown in Fig. 4a, in the first step of simulation of Backward Facing
Step, the URF value increases by 1% from 0.7 to 0.707 (following the control logic) as the classifier
predicted convergence. At the next prediction, the classifier predicts divergence and the URF value
is reduced by 20% to 0.5656. In this way, the classifier and control logic update the URF value at
intervals of 30 iterations. Fig. 4b shows the simulation behaviour for the Tundish. The efficacy of our
system is established by the Green and Red curves which represent the simulation behaviour with
and without URF control. Our solution is able to stabilize 100% of the diverging simulations.

Another utility of our system is to accelerate a converging simulation. As shown in Fig. 4c, the URF
value for a converging Backward Facing Step simulation is rising slowly from 0.3 till 0.5 in steps of
1%. A zoomed view of Fig. 4c near convergence, as shown in Fig. 4d, shows that the residue plot
with control cuts the log of scaled residue value at 1e-5 much before residue plot without control.
Here, we have achieved 10% reduction in number of iterations. In case of Backward facing step, a
significant reduction in the number of iteration is observed (refer Fig. 4e). Even if we start with low
or high URF value, the model is observed to provide positive gains by accelerating simulation.

Conclusion and Future Works. Our proposed solution is generic and can be integrated with any
CFD tools. This automated process saves a lot of manual effort and time thereby making it beneficial
for many industry scale CFD problems that run for days. Moreover, the SNN model can easily be
retrained with additional data to improve the accuracy and to cater to different classes of problems.
In future, we intend to improve the existing fixed control logic to an adaptive URF controller varying
with the SR value. We also intend to test the performance and power consumption of the SNN by
running it on a real neuromoprhic hardware such as Intel Loihi [2, 9] or Brainchip Akida [1].

4

References
[1] Brainchip. Akida akd 1000, 2022. URL https://brainchip.com/

akida-neural-processor-soc/.

[2] M. Davies, N. Srinivasa, T.-H. Lin, G. N. Chinya, Y. Cao, S. H. Choday, G. D. Dimou, P. Joshi,
N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,
G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38:82–99, 2018.

[3] Z. Dragojlovic and D. A. Kaminski. A fuzzy logic algorithm for acceleration of convergence in
solving turbulent flow and heat transfer problems. Numerical Heat Transfer, Part B: Fundamen-
tals, 46(4):301–327, 2004.

[4] S. Furber. Large-scale neuromorphic computing systems. Journal of neural engineering, 13(5):
051001, 2016.

[5] A. M. George, D. Banerjee, S. Dey, and A. Mukherjee. A reservoir-based convolutional spiking
neural network for gesture recognition from dvs input. International Joint Conference on Neural
Networks, 2020.

[6] A. Gosman. Developments in cfd for industrial and environmental applications in wind engi-
neering. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3):21–39, 1999.

[7] C. T. Kelley. Iterative methods for linear and nonlinear equations. SIAM, 1995.

[8] L. Lapicque. Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une
polarization. Journal de Physiologie et de Pathologie Generalej, 9:620–635, 1907.

[9] C.-K. Lin, A. Wild, G. N. Chinya, Y. Cao, M. Davies, D. M. Lavery, and H. Wang. Programming
spiking neural networks on intel’s loihi. Computer, 51(3):52–61, 2018.

[10] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural Computation, 14(11):
2531–2560, 2002.

[11] U. Manual. Ansys fluent 12.0. Theory Guide, 2009.

[12] C. Min and W. Tao. An under-relaxation factor control method for accelerating the iteration
convergence of flow field simulation. Engineering Computations, 2007.

[13] S. Pawar and R. Maulik. Distributed deep reinforcement learning for simulation control.
Machine Learning: Science and Technology, 2(2):025029, 2021.

[14] F. Ponulak and A. Kasinski. Introduction to spiking neural networks: Information processing,
learning and applications. Acta neurobiologiae experimentalis, 71(4):409–433, 2011.

[15] J. Ryoo, D. Kaminski, and Z. Dragojlovic. A residual-based fuzzy logic algorithm for control
of convergence in a computational fluid dynamic simulation. 1999.

[16] P. Singh and D. Ahmad. Optimal tundish deisgn using openfoam. In ASTFE Digital Library.
Begel House Inc., 2018.

[17] R. So, Y. Lai, B. Hwang, and G. Yoo. Low-reynolds-number modelling of flows over a
backward-facing step. Zeitschrift für angewandte Mathematik und Physik ZAMP, 39(1):13–27,
1988.

[18] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational
continuum mechanics using object-oriented techniques. Computers in physics, 12(6):620–631,
1998.

[19] P. Wesseling. Principles of computational fluid dynamics, volume 29. Springer Science &
Business Media, 2009.

5

https://brainchip.com/akida-neural-processor-soc/
https://brainchip.com/akida-neural-processor-soc/

[20] W. You, Z.-Y. Li, and W.-Q. Tao. A general self-adaptive under-relaxation strategy for fast and
robust convergence of iterative calculation of incompressible flow. Numerical Heat Transfer,
Part B: Fundamentals, 77(4):299–310, 2020.

[21] A. Zhang, W. Zhu, and M. Liu. Self-organizing reservoir computing based on spiking-timing
dependent plasticity and intrinsic plasticity mechanisms. In 2017 Chinese Automation Congress
(CAC), pages 6189–6193, USA, 2017. IEEE.

[22] M. A. Zidan, J. P. Strachan, and W. D. Lu. The future of electronics based on memristive
systems. Nature Electronics, 1(1):22, 2018.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

6

	Introduction
	Spiking Neural Network: Methodology & Architecture
	Control Logic and Simulation
	Experimental setup, Results & Discussion

