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Abstract

The reconstruction of complex time-evolving fields from a small number of sen-
sor observations is a grand challenge in a wide range of scientific and industrial
applications. Frequently, sensors have very sparse spatial coverage, and report
noisy observations from highly non-linear phenomena. While numerical simu-
lations can model some of these phenomena in a classical manner, the inverse
problem is not well-posed, hence data-driven modeling can provide crucial dis-
ambiguation. Here we present the Senseiver, an attention-based framework that
excels in the task of reconstructing spatially-complex fields from a small number
of observations. Building on the Perceiver IO model, the Senseiver reconstructs
complex n-dimensional fields accurately using a small number of sensor observa-
tions by encoding arbitrarily-sized sparse sets of inputs into a latent space using
cross-attention, which produces a uniform-sized space regardless of the number of
observations. This same property allows very efficient training as a consequence of
the being able to decode only a sparse set of observations as outputs. This enables
efficient training of data with complex boundary conditions (sea temperature) and
to extremely large and complex domains (3D porous media). We show that the
Senseiver sets a new state of the art for three existing datasets, including real-world
sea temperature observations, and pushes the bounds of sparse reconstruction using
a large-scale simulation of two fluids flowing through a complex 3D domain.

1 Introduction

The goal of sparse sensing is to take a few sensor values from a field that we cannot fully observe,
and use them to reconstruct the global field. Reconstructing a spatial field from sensor data has been
a grand challenge in a wide range of industrial applications, medical, and scientific fields, including
fluid flow [21], engineering and industrial monitoring [2] , earth systems observations [22], and
biomedical engineering [19]. The common feature of these applications is low spatial sensor coverage
(typically less than 1%), recording noisy, non-linear, dynamic phenomena. Some of these systems can
be fully described by physics-based partial differential equations (PDEs), nevertheless, integrating
field observations (for example, sensor measurements) back to the PDEs is challenging.
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Figure 1: Overview of sparse reconstruction using the Senseiver model. Using sensor values and
query locations which are sparse in the field domain. The sensor values are processed by an encoder,
and the resulting latent representation is passed along with the query information to a decoder which
estimates the field at a new location.

A variety of techniques have been developed using PDE-based [9, 10] and statistical [5, 27, 15]
approaches. Still, widespread success has been elusive due to a lack a generic framework to
incorporate measured data at arbitrary times and locations. As a result, machine learning models have
become an attractive alternative [5, 27, 15], since these models have the capacity to learn complex
relationships from non-linear data regardless of its sparsity, structure, and resolution. Machine
learning models have the potential to be successful even when the governing PDEs of the system are
not available. However, models to reconstruct sparse data should take in account certain restrictions:
Real-world sensors are subject to practical constraints, such as physically limited sensor positions
(e.g., floating buoys in the ocean [1]), and that covering a field exhaustively can be prohibitively
expensive, if not impossible.

Recently, Fukami et al [8] introduced a method based on Voronoi tessellation of observations onto the
prediction domain, followed by a refinement using a convolutional network. Their approach has the
attractive upsides of allowing arbitrary sensor placement within a 2D mesh, and allowing to perform
inference using sensor locations which differ from the ones used during training. Nevertheless, this
approach inherits hurdles of deep convolutional networks, like the assumption of a gridded structure
and high memory costs (for 3D domains, or in very big 2D arrays) difficulting scaling it to large
domains, which are prevalent in real-world problems.

Attention mechanisms[23] have greatly improved over other architecture baselines for a variety of
problems [24, 3, 14], and recently, the PerceiverIO framework [13] overcame a crucial computational
bottleneck using cross-attention with latent arrays, thereby constraining the bulk of the network
activations to a fixed-sized space regardless of input length. While this was viewed as a way to handle
large sets of inputs (e.g. every pixel in an image), we exploit the fact that it also allows us to scale
down the quantity of information fed into a network, resulting in a workflow we call the Senseiver.
Rather than treating field reconstruction as a dense image problem, we encode the observed sensor
values into a fixed sized vector, which can then be used with a decoder to provide estimation for the
entire field. This workflow is shown in Fig. 1. Crucially, it can treat spatial data which does not live
on a fixed, regular, Cartesian-type mesh, by embracing sparsity. These features shows promise in
scaling our approach to datasets across a variety of scientific domains with arbitrary size. meshing
and geometry.

In this work, we demonstrate examples of these advantages on several datasets, and we compare
them to previously-proposed methods, showing drastic improvement in accuracy, scalability and
efficiency. Beyond improvements in accuracy, we discuss additional benefits of the sparse processing
model of the Senseiver, such as prediction of partial information, reduced memory requirements, and
importantly, the ability to treat spatial data which does not live on a fixed, regular, Cartesian mesh.
Our model goes further than previous propositions because it treats the problem sparsely, thereby
allowing for training to domains of arbitrary size and structure.

2 The Senseiver: an attention-based learning approach

We aim to learn a compact representation of the state of a system from a small number of sensor
observations at a given time. This encoded representation can be use to decode the state of the full
system from sensor data. The input to our model is a set of Ns sensor observations si taken at time
t, {s1, s2, . . . sNs

}t, with si ∈ RNc , where Nc corresponds to the number of channels recorded by
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the sensors. The system has a domain Ω where a set of sensor locations ({χs1 , χs2 , . . . χsn}, with
χsi ∈ RN ) are extracted. The details of the computational implementation are shown in Appendix A.

The Senseiver has three main components: 1) a spatial encoder PE that maps a spatial coordinate χ
to an array of spatial encodings a using sine-cosine embeddings [23], 2) an attention-based encoder
E that maps the spatial encodings of the sensor positions a and their values s to a latent space z, and
3) an attention-based decoder D which is queried to obtain the value of the system at a specified
position χq . This architecture can be described by the following equations:

a = PE(χ),

z = E(as, s) = E (PE(χs), s(χs, t)) ,

ŝq = D(z, aq) = D(z, PE(χq)).

3 Results

We chose datasets representing two major classes of scientific problems with varying degrees of
complexity, and our results are shown in Fig. 2, where we reported the L2 norm (ε). Category 1:
Cyclic and quasi-cyclic phenomena: These datasets exhibit periodicity or seasonality, as seen in
some applications in engineering and climate sciences. In this context, the model is able to generalize
extremely well with a very small amount of data. We tested two datasets of this kind, a) a 2D unsteady
flow pass a cylindrical obstacle [4] which results in a von Kármán vortex street, an alternating
shedding of left- and right-handed vortices in the flow field behind the cylinder. We trained our
model to reconstruct the simulation based on eight sensor locations as proposed by [8] and sensor
locations at the inlet/outlet boundaries, which represents a more realistic configuration, for example,
in a laboratory experiment. b) The NOAA sea surface temperature [18]. This real-world dataset
was collected from satellite and ship-based observations through time. The data comprise weekly
observations of the sea surface temperature of the planet Earth. During training we do not use any
information about field values on the continents, because their is no recorded value to reconstruct,
which saves computational time (since the continents are 32% of the computational domain). We
tested the trained model in data spanning from 2001 to 2018 to show the models ability to extrapolate.

Category 2: Acyclic and non-linear chaotic phenomena: These datasets are prevalent in several
applications and are characterized by highly chaotic dynamics that lack periodicity in time or space
and present spatial structures that are complex and vary greatly throughout time. The goal in this
section is to demonstrate the capability of the model to learn complex time-dependent features
and to scale to large domains. The first dataset on this section a) turbulent fluid flow through a
channel[7]. The flow field data is obtained by a slicing a three-dimensional numerical simulation
of incompressible flow in a channel at a Reynolds number of 180. The target of interest in this case
is the velocity of the middle slice in the direction of flow. The second dataset b) two immiscible
fluids flowing through a complex 3D medium comprised of spherical obstacles. A simulation was
run using the lattice-Boltzmann method for 4 days in 120 CPU cores to generate this dataset.The goal
of this test case is to assess the capabilities of our model to train with very large domains, which so
far have been a challenge for machine learning methods. The computational domain is 128x128x512
and we collected 100 frames (over 1.6 billion points). Similarly to the sea temperature dataset, in
this domain around 70% of the grid cells have no property value to reconstruct (solid boundaries),
hence the training is sped-up by a significant factor compared to current approaches, as our method
identifies these areas of no data.

Discussion: The flexibility of the proposed architecture allows to explore many use cases that were
not possible until now. Although we tried to cover as much ground as possible, there were many things
left unexplored. For instance, non-Cartesian or unstructured grids can be used during training and/or
inference, on the same vein, the resolution of the field prediction can be increased by computing
the desired property at intermediate intervals. The sensors can can have more than 1 channel which
can record different things. Also, multiple decoding heads can be trained to predict outputs with
different boundary conditions or different downstream tasks (segmentation, classification, inference
of a different property). The positional encodings could be used to train a model to have forecasting
capabilities. During the development of this project, an attempt was made to encode time using
sine-cosine encodings without success. On the other hand, we tried utilizing a trainable array where
each time increment (dt) corresponded to one vector, this was successful but we found it unpractical
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Figure 2: Senseiver performance in the different datasets. a) Even with just 4 sensors at the boundary,
the Senseiver is able to reconstruct the the entire simulation faithfully with a negligible drop in
accuracy compared to the eight sensor configuration. b) Performance of the model on the turbulent
dataset varying the number of sensors and their locations at inference time. We tested our trained
model with ten different random sensor locations. The plot sows the 10th and 90th percentile as
bounds of the error plot and the average of the with a line. Predictions are shown for the 25 sensor
reconstruction, finer details are reconstructed when more sensors are added. c) In the sea temperature
forecasting, just ten sensors allow for a very strong reconstruction performance of ε = 0.04. Ten
sensors constitute a total spatial coverage of 0.0154 %. By adding more sensors yields the overall test
error goes down and missing details are added to the local temperature field as seen in subpanel. d)
Performance of the model versus temporal coverage in the large 3D simulation. Each line represents
a trained model and the points represent the training data. The Reconstructions of the density field
for time step 95 using 25 sensors are shown.
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since it requires the model to visit every time increment (dt) during training. One interesting avenue
for future work could be to enforce known physics through the positional encodings.

4 Conclusion

From an information theoretic perspective, sparse sensing is an inverse modeling problem which maps
sparse, low-dimensional measurements to a dense high-dimensional state. The goal of sparse sensing
algorithms is to obtain the best possible estimates useful enough to inform practical applications, since
there are few other viable alternatives. We propose an attention-based neural network architecture,
the Senseiver, to encode a compact representation of large systems. We validated the effectiveness
of our method with extensive demonstrations on different datasets of interest to the sparse-sensing
community, and also on a complex, realistic three-dimensional fluids dataset for the first time in
literature. Our approach offers new capabilities for large, practical applications compared to the state-
of-the-art convolutional neural network architectures [8] by demonstrating higher accuracy with lower
memory footprint. Three examples of global flow reconstruction from local sensor measurements
demonstrated the accuracy and robustness of our method. Sparse sensing of fluid flow data, especially
turbulence, is extremely challenging due to non-linearity and chaos. Additionally, a low sensor
coverage makes the task harder since the sensors can have non-unique reconstructions. Compared to
the previous efforts, our model scales effectively in large domains of high dimensionality.

Sparse sensing of fluid flow data, especially turbulence, is extremely challenging due to non-linearity
and chaos. Four examples of global flow reconstruction from local sensor measurements demonstrated
the accuracy and robustness of our method. Compared to the previous efforts, a key advantage of
the Senseiver is using a query based decoder, allowing us to predict domains of arbitrary sizes in
a sequential manner. This decoupling of the query process from the dimensionality of the dataset
makes it extremely memory efficient and allows our model to scale effectively to large domains. It
is possible to tailor the Senseiver to a particular applications by incorporating physics constraints.
Another potential application could be to use it as a super-resolution model, since the model has more
information available to it than in a sparse-sensing problem. In summary, this work scratches the
surface of what is possible with attention-based architectures for sparse sensing.
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6 Broader Impact

With the advent of low cost sensors and the IoT revolution, sparse-sensing is seeing a resurgence
in interest for many scientific applications. In a chaotic system, the physics implies that we can
only approximately estimate a system from a few sparse measurements. The number of sensors,
and the relative positions of these sensors are of utmost importance. When we use too few sensors
and/or place them in locations where its impossible to fully observe the system, as it often happens
in practice, the problem becomes more challenging. In light of these fundamental limitations, we
show that our approach not only outperforms current methods in literature, but also presents new
capabilities for large, realistic datasets that were previously intractable. Numerous applications
ranging from structural health monitoring of aerospace systems [2] and civil infrastructure [25], earth
system monitoring [16] and weather forecasting [26] have complex governing physics beyond the
scope of current PDE-based sparse-sensing techniques. These can be promising application areas
for our method, since it is generic and not restricted to a specific problem, as shown in the diverse
datasets used in this work.
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A Appendix

We define the multi-head attention mechanism as in [23]. We have a query Q, a key K, and a value
V , which are vectors whose components are independent random variables with mean 0 and variance
1. Starting with the equation for scaled dot product attention,

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V, (1)

where dk is the dimension of K and Q, which is used as a factor that scales the variance of the
dot-product to 1. Multi-head attention applies a set of H separate linear transformations to Q,K and
V and computes the attention mechanism on each linear transformation h. It then concatenates the
outputs from each head and computes a final linear transformation to form the output.

MultiHead(Q,K, V ) = [O1 ⊕ · · · ⊕OH ]WM (2)

where Oh = Attention(QWQ
h ,KW

K
h , V WV

h ). (3)

We use two specific flavors of the multi-head attention mechanism to build the encoder of the
Senseiver. Once the sensor data si and corresponding positional encodings ai are concatenated
(x(0)) and processed using a dense linear layer (x(1)), the matrix x(1) is passed through a cross-
attention layer in which Q is a learnable latent array denoted Qin ∈ RNg×Nq , and K,V are both the
output of the previous layer x(1) ∈ RNs×M1 . Therefore, the set of weight matrices for each head
h = 1, 2, . . . ,H in Eq. 2 have dimensions WQ

h ∈ RNq×Nk , WK
h ∈ RM1×Nk , WV

h ∈ RM1×No . The
dimension of Oh ∈ RNg×No , and therefore the dimension of WM ∈ RH·No×NM , leading to the
output x(2)Ng ×NM .

After the initial multi-head cross attention, x(2) is fed into a multi-head self-attention layer, in which
Q,K and V in Eq. 2 are all given by x(2). The weight matrices are WQ

h and WK
h ∈ RNM×Ñk ,

WV
h ∈ RNM×Ño . The dimension of Oh ∈ RNg×Ño , and therefore WM ∈ RH·Ño×NM , leading to

the output x(3) ∈ RNg×NM . These two sequential operations (cross-attention and self-attention)
constitute one encoding block. In our experiments, we used three of these blocks where weights
are shared. x(3) is recursively fed back through these blocks to yield the encoded sensor data
z ∈ RNg×NM .

Next, in the decoder section, this latent vector z is concatenated with the sine-cosine encoding of the
query position, aq. The vector aq is stacked Ng times to match the number of rows in z, forming a
matrix v ∈ RNg×NM+2·D·Nf . We then perform multi-head cross-attention on v, and pass the output
to a linear layer which yield an output ŝ ∈ RNout .
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