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Abstract

Proton—proton collisions at the large hadron collider result in the creation of
unstable particles. The decays of many of these particles produce collimated
sprays of particles referred to as jets. To better understand the physics processes
occurring in the collisions, one needs to classify the jets, a process known as jet
tagging. Given the enormous amount of data generated during such experiments,
and the subtleties between different signatures, jet tagging is of vital importance
and allows us to discard events which are not of interest—a critical part of dealing
with such high-throughput data. We present a new approach to jet tagging that
leverages topological properties of jets to capture their inherent shape. Our method
respects underlying physical symmetries, is robust to noise, and exhibits predictive
performance on par with more complex, heavily-parametrized approaches.

1 Introduction

Experimental particle physics enjoys some of the largest data sets in scientific history. The High-
Luminosity LHC, for example, is expected to enter the exabyte regime. Like other scientific fields,
technological advances in particle physics have resulted in an increasing need to understand large
high-dimensional data sets. Such high-dimensional data is not amenable to traditional statistical
analysis methods, which are often unable to capture the underlying shape of the data set. However,
due to correlations between features, many real-world data sets tend to lie on or near a much
lower-dimensional manifold embedded in the ambient feature space. This is the so-called manifold
hypothesis, which remains at the heart of modern geometric and topological methods for data
analysis. Of particular interest in this context are methods based on the recently-emerging paradigm
of topological data analysis [TDA]. Deeply rooted in the field of algebraic topology, TDA methods
capture topological information—e.g., the number of holes, or the number of connected components—
about the data manifold. Understanding the underlying topology not only leads to deeper insights
about the data, but also provides a convenient, stable way to “featurize” high-dimensional data sets in
a way that captures multi-scale information.

Despite advantageous robustness and stability properties [1], TDA methods have not been widely
adopted for particle physics. It is our aim to show that topological techniques stand to enormously
benefit the field. Importantly for this paper, as we shall see, topological features respect a set of
symmetries, making them well-suited to physical applications. In particular, topological features are
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provably stable with respect to small perturbations of the underlying point cloud. We take advantage
of these assets, applying TDA for jet tagging.

2 Background

2.1 Topological Data Analysis

Topological data analysis is based on the idea of capturing the shape of a data set at multiple scales.
This is achieved by first approximating a data set using a simplicial complex K, i.e., a generalization
of a graph. The connectivity of K is subsequently described using simplicial homology, a framework
to assign a set of graded groups to K, the homology groups. The elements of the d-dimensional
homology group correspond to the topological features of K, i.e., connected components (d = 0),
tunnels (d = 1), and voids (d = 2). The number of d-dimensional topological features is known
as the dth Betti number 84 € IN; it is a characteristic property of an input data set. Extending
simplicial homology to point clouds results in persistent homology [2]], a multi-scale extension of
simplicial homology, making it possible to describe homology groups at different spatial scales e,
thus accommodating that real-world data have features occurring at multiple scales. Multi-scale
topological features are then stored in a persistence diagram D, a set of points in R?; every point
(¢,d) € D represents a topological feature created at scale ¢ and destroyed at scale d. Persistence
diagrams—and other topological descriptors—have shown exceptional promise in numerous tasks
such as shape reconstruction [3]] and graph classification [4]]; we refer to a recent survey for more
details on the use of topological features in machine learning [[1].

2.2 Jets

In the particle physicist’s worldview, known as the Standard Model [SM], all visible matter in the
universe is composed from six types (flavors) of quarks and six flavors of leptons. Each of these
has an associated anti-particle, and they all interact via three fundamental forces (ignoring gravity),
which are mediated by particles called bosons. This simplified explanation obscures a rich history
of discovery and immense practical challenges. Only a handful of these particles are stable, and
producing the more exotic ones requires high energies accessed via complex experimental endeavors
such as the Large Hadron Collider [LHC]. Due to a physical process known as confinement, quarks
produced in these collisions cannot exist on their own. It is energetically favorable for them to pull
new particles out of the vacuum, which also subsequently decay into new particles. Additionally, the
production and radiation of gluons produce particles. The result is a collimated shower of particles
known as a jet. Experimentally, a jet presents as a collection of tracks and energy deposits, which are
clustered together. Jet tagging refers to the task of identifying the type of particle that initiated a jet.
One can directly use certain observables to tag jets. For example, b quark-initiated jets form short
lived particles that travel a small distance before decaying, which can be identified by secondary
vertices for the tracks in the jet. As another example, gluon jets tend to be wider and contain more
particles [5] than quark jets. However, these selections alone achieve limited success, and as a
result, jet-tagging has provided a wonderful playground for machine learning frameworks within
high-energy physics. For instance, RNNs [6] [7, 18], CNNs (e.g., ATL [9]), and GNNs [10]] have seen
applications for this task.

2.3 Symmetries and Motivation

Symmetries in physics refer to a set of transformations under which the laws of physics are invariant.
The symmetries of Einstein’s special theory of relativity are described by the Poincaré group,
which can be understood as the semi-direct product of the group of spacetime translations with
Lorentz transformations, which relate space and time coordinates between moving frames. Lorentz
transformations further decompose into spatial rotations, and boosts, where the direction of motion
is in line with a particular coordinate axis. This structure of the underlying physics thus motivates
our use of topological features as physically meaningful representations of jets: the topological
features of jet point clouds are invariant under homeomorphisms (e.g. translations and rotations)
and permutations of particles (which is a symmetry that e.g. RNNs violate). Furthermore, we claim
that topological features are at least approximately Lorentz invariant. Boosted jets tend to squeeze in
along the axis of motion. Under a boost, then, we can think of each particle as displacing by some
small distance, which bounds the (Gromov—)Hausdorff distance between the original and boosted



point clouds. This serves as an upper bound for the (Wasserstein) distance between topological
features [ 1], implying that the persistence diagrams of the two jets are not too different. We are led to
suspect that the topology can provide a robust representation of the jet for use in classification. Despite
these advantageous properties, we are only aware of a single other work that employs topology to
study jets [12]. While the authors demonstrate that topological features on average can distinguish
distributions of jets, their work uses momentum information, whereas our work is the first to provide
a direct classification of individual jets based on coordinate information, hoping to encourage others
to follow in this novel research direction.

3 Methods and Results

We consider the quark-gluon tagging data set from Komiske et al. [13]. The goal is to distinguish
the light quark (signal) jets from the gluon (background) jets. The jets in this data set are simulated
with PYTHIAS according to the processes ¢§ — Z(— vi) + g and ¢§ — Z(— vv) + (u,d, s) in
/s = 14 TeV pp collisions. The final state particles, excluding neutrinos, are clustered into jets
with the anti-k7 algorithm (R = 0.4). Only jets with transverse momentum 500 < py < 550 GeV
and rapidity |y| < 1.7 are kept. Each jet is stored as a collection of particles, each with transverse
momentum pr, rapidity, azimuthal angle, and ground truth particle ID (pr, y, ¢, PID). We exclude
PID for training purposes, as this feature is not available in experiment. We used a split of 375k, 75k,
50k training, test, and validation jets, comprising a quarter of the full 2M jet dataset.
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Figure 1: Illustration of the method on an example gluon jet. In the top row, growing Euclidean
balls around individual data points results in an approximation of the topology of the dataset at
ever-increasing scales. The birth and death scales of the topological features are encoded in a
persistence diagram (bottom right). These can be represented hierarchically as a “landscape” (middle)
or alternatively as a Betti curve (left), which counts the active topological features at each scale.
These representations are fed to our RFs for training.

Models. Since the Lorentz invariance arguments above apply to the spatial coordinates, we com-
puted Vietoris-Rips filtrations by Euclidean distances in (y, ¢) and in (pr,y, ¢) space. From the
persistence diagrams, we computed persistence landscapes and Betti curves (each with 100 bins),
as shown in Figure[I] For comparison, we also computed Betti curves from momentum superlevel
set filtrations over the jets’ Delaunay triangulations, following the methods of Li et al. [12]. To
showcase the potential of topological techniques, we trained ensemble classifiers — based on random
forests (RFs) — on these topological representations of jets. RF hyperparameters were found by
performing a halving grid search using 5-fold cross validation on the validation set. In all cases, the
optimal parameters were found to be a maximum depth of 10, 100 minimum samples to split, and 100
trees, except for the RF trained on Vietoris-Rips Betti curves with py, where the optimal minimum
samples to split was found to be 10. We then fit the RFs with these optimal parameters to the training



Classifier AUC é ate, = 70% é ates = 50% é ates = 30%

DNN 0.870 7.9 23.5 75.5
EFN 0.855 7.2 23.5 76.1
PFN 0.873 8.3 23.9 69.0
Mass 0.740 2.7 7.9 32.8
Multiplicity 0.841 5.8 19.0 51.1
RF Curves 0.847 6.4 18.6 56.8
RF Curves with pt 0.846 6.3 18.4 52.3
RF Landscapes 0.779 3.6 7.6 17.9
RF Landscapes with pt 0.798 4.1 9.2 22.5
RF Superlevel pt Curves 0.832 5.3 14.3 42.1

Table 1: Performance and background rejection comparisons.

data, and computed ROC curves and rejection metrics 1/, based on the test data. Selected code is
available in For comparison, we trained some popular deep approaches using the same
train/test split. In particular, we compared to (i) Energy Flow Networks [EFN] and Particle Flow
Networks [PFN] using the EnergyFlow package [13]], (ii) a Dense Neural Network trained on the
N-subjettiness [14] with N = 16, and, finally, (iii) jet mass and multiplicity observables. The results
are shown in Figure 2]and in Table[T]
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Figure 2: A comparison of ROC curves. Persistence landscapes perform slightly worse than Betti
curves, whose performance approaches that of highly-parametrized models.

4 Conclusion

In terms of AUC, we see that the topological methods all beat the jet mass observable, with the RFs
trained on Betti curves performing particularly well — comparable to the deep approaches. For the
reasons given in Ketchum and Beretvas [5]], we expect multiplicity to distinguish qg jets particularly
well, but in terms of AUC, and for the 30% and 70% signal efficiency working points, the Betti curve
RFs outperformed multiplicity. We emphasize the promising fact that these sparse models perform
almost as well as the deeper models. The EFN, PFN, and DNN models have 56,630, 56,730, and
12,002 trainable parameters, respectively, far more than the random forests. We foresee many more
possibilities using more sophisticated architectures for classification, and numerous applications for
our method.

Our results, though promising, are still in their early stages. Perhaps most notably, we only applied
our methods to the case of quark-gluon tagging. We attribute this to a general lack of open-source
jet tagging data sets, especially those which include coordinate information in addition to kinematic
information. It is possible that we would notice a difference in performance for other jet-tagging



tasks. For example, our Lorentz stability argument hints at success for situations such as top-tagging.
These jets are also richer in substructure, which further motivates the application of TDA methods.
Nevertheless, we hope our work motivates the inclusion of topological techniques into jet tagging
algorithms.

Broader Impacts

Our work is unique in that it is the first to implement a tagger based on jet topology. Though
relatively simple in its current form, our results suggest that incorporating topological features of
jets stands to improve tagging algorithms. Moreover, our work shows that this can be achieved with
relatively simple classification architectures. In experiments such as those at the LHC, events occur
at frequencies on the order of MHz, and a system of triggers selects the interesting events at a more
reasonable rate. Clearly, time is of the essence in this process. If a topological method can be made
faster than, for instance, a deep network forward pass, even small improvements can drastically
increase the size of the statistics that are kept. This is crucial for all subsequent physics analysis.
Moreover, topological methods are inherently robust to noise, which we suspect makes them resistant
to effects such as pileup, which will be a critical obstacle in the High Luminosity LHC. We hope
to explore these angles more precisely in our future work. The potential of topological methods in
particle physics remains largely untapped, but our work represents one step in the right direction.
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Appendix A Selected Code and Implementation

In this appendix, we provide some python code for computing the topological features and training the
random forests, which are implemented in scikit-learn [[15] (BSD license). For the deep models used,
we ran the examples available in the EnergyFlow Package of Komiske et al. [[13]] out-of-the-box.
For topological computations, we used giotto-tda [16]] (GNU AGPLv3 license). All code was run in
Google Colab, with GPU enabled for training the deep models.

Appendix A.1 Computing Persistence Diagrams

from

from
from

from
from

from
from

from
from

energyflow.datasets import qg_jets

energyflow.utils import data_split
energyflow.utils import to_categorical

gtda.diagrams import BettiCurve, PersistencelLandscape
gtda.homology import VietorisRipsPersistence

sklearn.ensemble import RandomForestClassifier
sklearn.metrics import classification_report, roc_auc_score, roc_curve

sklearn.experimental import enable_halving_search_cv
sklearn.model_selection import HalvingGridSearchCV

import numpy as np
import matplotlib.pyplot as plt

for i in range(20):

filepath = ’./.energyflow/datasets/QG_jets_{}.npz’.format (i)

print("Loaded file ", filepath)

if i==0:

data = np.load(’./.energyflow/datasets/QG_jets.npz’)
else:

data = np.load(filepath)

X = data[’X’]
y = data[’y’]

X =X[:, :, :3] #:3, drop PDG ID

for x in X: # Center and normalize jets

mask = x[:, 0] > 0O

yphi_avg = np.average(x[mask, 1:3], weights=x[mask, 0], axis=0)
x[mask, 1:3] -= yphi_avg

x[mask, 0] /= x[:, 0].sum()



X =X[:, :, 1:3] #just y and phi
X_drop_zeros = [x["np.all(x == 0, axis=1)] for x in X] # drop zero padding
del X
X_drop_zeros_and_empty = []
for x in X_drop_zeros:
if x.shape[0] >= 1:
X_drop_zeros_and_empty.append (x)
else:
# To avoid an error in the rare case the jet is empty
X_drop_zeros_and_empty.append(np.array([[0., 0.]11))
del X_drop_zeros

print ("computing diagrams for file ", filepath, "...")
vr = VietorisRipsPersistence()

diagrams = vr.fit_transform(X_drop_zeros_and_empty)
print("done computing diagrams.")

print("saving...")

np.savez (’<name_your_file_{}>’.format(i), diagrams=diagrams, y=y)
print("saved diagrams to ./diagrams/diagrams_{}.npz".format(i))

del diagrams
del vr

Appendix A.2 Computing Representations of Diagrams

We include the code to process saved diagrams into Betti curves. The process is identical for
persistence landscapes.

for i in range(20):
filepath = ’<path_to_dgms_{3}>’.format (i)
data = np.load(filepath)
diagrams, y = datal[’diagrams’], datal’y’]
print("Loaded file ", filepath)

bc = BettiCurve(n_bins=100) # or landscapes
print("Calculating Betti curves...")

curves = bc.fit_transform(diagrams)
print("done computing Betti curves.")

del diagrams

print (’re-shaping...?’)

curves = curves.reshape(curves.shape[0], -1)
print (’done re-shaping.’)

new_fname = ’/path/curves_{}’.format (i)
print("saving as ", new_fname, ".npz ...")
np.savez(new_fname, curves=curves, y=y)

print (’done\n’)

del curves

Appendix A.3 Random Forest Training

First we optimize hyperparameters on the validation set, which we have loaded into curves_train,
curves_val, and curves_test as described in Section 3]

# Set up possible values of parameters to optimize over



p_grid = {’max_depth’: [3, 5, 10], ’min_samples_split’: [10, 100, 1000],
‘n_estimators’ : [1, 10, 50, 100]}

rf = RandomForestClassifier(n_jobs=-1)

# Score according to auc

clf = HalvingGridSearchCV(estimator=rf, param_grid=p_grid, cv=5,
scoring=’roc_auc’, n_jobs=-1)

clf.fit(curves_val, y_val)

best_params = clf.best_params_
print (best_params)

## Returned {’max_depth’: 10, ’min_samples_split’: 100, ’n_estimators’: 100}
## For both Betti curve and landscape RFs

Then, we fit the the test data with the optimal hyperparameters:

rf = RandomForestClassifier(max_depth=best_params[’max_depth’],
min_samples_split=best_params[’min_samples_split’],
n_estimators=best_params[’n_estimators’],
n_jobs=-1)

rf.fit(curves_train, y_train)

y_pred = rf.predict(curves_test)
y_pred_probs = rf.predict_proba(curves_test)[:, 1]
print(classification_report(y_test, y_pred))

# get ROC curve

fp, tp, threshs = roc_curve(y_test, y_pred_probs)
auc = roc_auc_score(y_test, y_pred_probs)

print (’\nRF AUC:’, auc)
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