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Abstract

Recently, neural network potentials (NNPs) have been shown to be particularly
effective in conducting atomistic simulations for computational material discov-
ery. Especially in recent years, large-scale datasets have begun to emerge for the
purpose of ensuring versatility. However, we show that even with a large dataset
and a model that achieves good validation accuracy, the resulting energy surface
can be quite delicate and the easily reach unrealistic extrapolation regions during
the simulation. We first demonstrate this behavior using a DimeNet++ trained
on Open Catalyst 2020 dataset (OC20). Based on this observation, we propose a
hypothesis that for NNP models to attain the versatality, the training dataset should
contain a diverse set of virtual structures. To verify this, we have created a rela-
tively much smaller benchmark dataset called “High-temperature Multi-Element
2021” (HME21) dataset, which was sampled through a high-temperature molecu-
lar dynamics simulation and has less prior information. We conduct benchmark
experiments on HME21 and show that training a TeaNet on HME21 can achieve
better performance in reproducing the absorption process, although HME21 does
not contain corresponding atomic structures. Our findings indicate that dataset
diversity can be more essential than the dataset quantity in training universal NNPs
for material discovery.

1 Introduction

In recent years, neural network potentials (NNPs) have rapidly gained attention owing to the high
expressive power of neural networks (NNs) combined with the availability of large-scale datasets. As
datasets and models evolve, the scope of NNP applications has gradually expanded. As a benchmark
for molecular systems, the QM9 dataset [8, 9], which covers possible patterns of small molecules, has
been widely used. Initially, NNPs for organic molecules have focused on H, C, N, and O, which are
the major elements in organic molecules. In subsequent studies, NNPs have been extended to include
elements such as S, F, and Cl [4, 12]. For NNPs targeting crystal structures [3, 16], the Materials
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Figure 1: Optimized structures created by dimenetpp_all. The surface and molecule are Co (0001)
and COH, respectively. Left: Started from the well-prepared adsorbed structure. Middle: Pure surface
structure. Right: Started from the structure which the molecule attached on pure surface structure.
The energy of the right structure is lower than that of the left one. The figures were drawn using the
VESTA visualization package. [7] Those structures were taken from [15].

Project [6], a large-scale materials database based on DFT calculations, is often used as a benchmark
dataset. The Open Catalyst Project, which targets molecular adsorption in catalytic reactions, has
constructed a massive surface adsorption structure dataset known as the Open Catalyst 2020 (OC20)
dataset [2, 18]. In this way, the area covered by NNPs has gradually expanded.

However, even with the construction of such a large dataset, we found that there is still a significant
technical gap in the realization of general-purpose atomic simulations. To demonstrate this, we
used the Open Catalyst Project baseline model. We used the publicly available trained model
dimenetpp_all from the Open Catalyst Project implementation (https://github.com/Open-Catalyst-
Project/ocp/tree/v0.0.3). This model was trained with the DimeNet++ [5] architecture on all data
from the S2EF task [2] included in OC20 (approximately 108 samples).

The reproduce result is shown in Fig. 1. We confirmed that the simulation worked as expected
if we already have the well-prepared adsorbed structure (Fig. 1 Left). However, when we tried
to reproduce the corresponding structure generation process by adding molecule on the optimized
surface structure (Fig. 1 Middle), the simulation went to the physically unrealistic state. Worse, the
broken structure finally obtained through this process was shown to be even more energetically stable
than the well-prepared structure (Fig. 1 Right). It indicates that even there is a large dataset and a
model that achieves a certain level of validation accuracy for that dataset, and even the simulation
target can be considered to be in-domain, the estimated energy surface by the model is still quite
delicate and can easily reach unrealistic extrapolation regions during the simulation.

The above result suggests that the conventional way of creating datasets has difficulties in applying
them to atomic simulations. All previously proposed datasets were generated based on known
structures. However, the above phenomenon can be attributed to the fact that there is no way of
knowing that an unrealistic structure is unrealistic for trained models. Therefore, as an opposite idea,
we can consider a dataset that is generated to cover as wide a range of phase space as possible, rather
than narrowing the domain.

Here, we introduce an atomic structure dataset called the high-temperature multi-element 2021
(HME21) dataset. HME21 dataset contains multiple elements in a single structure and was sampled
through a high-temperature molecular dynamics simulation. Thus, the structures are far from stable
and contain less prior specific domain knowledge, such as the molecule or crystal structures. The
structures produced in this fashion are a class of the most challenging configurations for prediction
because of their highly disordered nature. On the other hand, this dataset is expected to provide
a highly stringent assessment of the universality of the model. In Section 3, we show that a NNP
architecture designed to learn such highly disordered structures can indeed learn HME21 dataset
within reasonable accuracy. We also show, surprisingly, that the NNP model trained in this way is
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able to reproduce the surface adsorption simulation described above, even though HME21 dataset do
not have the corresponding structures.

We believe that the creation of more challenging dataset such as disordered, high-entropy, and less
domain specific ones will greatly improve the NNP capability, and HME21 can be one of the standard
benchmark for future universal NNP development.

2 High-temperature multi-element 2021 (HME21) dataset

In this section, we describe a highly disordered dataset called High-temperature multi-element 2021
(HME21) dataset. The structures were sampled by high temperature molecular dynamics simulation
with NNP. The sampled temperature was from 500 K to 10000 K. Each structure contains up to 20
types of elements. For more detail, see [15]. HME21 is available on [14].

Element types: HME21 contains multiple elements in a single structure and was sampled through a
high-temperature molecular dynamics simulation. There are a total of 37 elements in the HME21
dataset, which are H, Li, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Mo, Ru, Rh, Pd, Ag, In, Sn, Ba, Ir, Pt, Au, and Pb.

Data size: There are 24, 949 structures in HME21 dataset. We split the dataset into training (19, 956
structures), validation (2, 498 structures), and test (2, 495 structures) splits at the approximated ratio
of 8 : 1 : 1.

Task: The target values are energy and atomic forces. The energy is shifted such that the energy of a
single atom located in a vacuum becomes zero. The length is in angstroms (1 Å= 10−10 m), and the
energy is in electronvolts (eV).

3 Experimental results

In this section, we discuss experimental results of the model trained on HME21 dataset. We begin
this section by evaluating the performance of comparison models using mean absolute error (MAE)
for energy and force prediction tasks. After that, we demonstrate the ability of reproducing the
adsorption process of TeaNet [13], which is the model that performs best in terms of force and energy
MAEs on HME21.

3.1 Neural network architecture benchmark using HME21

We conduct benchmark experiments of energy/force prediction task in HME21 using recent NNP
architectures. For this benchmark, we selected TeaNet [13], SchNet [10], PaiNN [11], and NequIP [1].
TeaNet treats tensor representations as higher-order geometric features. SchNet uses the bond length
for spatial information and employs a convolution with rotationally invariant filters. This has been
well examined using various datasets, and its limited representation power has been discussed.
PaiNN incorporates a vector representation to resolve the problem of a limited representation of
rotationally invariant filters of SchNet. On the other hand, NequIP uses spherical harmonics-based
representations. The experimental code for both SchNet and PaiNN is based on the repository found at
https://github.com/learningmatter-mit/NeuralForceField, whereas the experimental code for NequiP
is based on the repository found at https://github.com/mir-group/nequip. The implementation codes
for SchNet, PaiNN, Nequip are under the MIT license, while TeaNet is under the CC BY 4.0 license.
The experiments were run on NVIDIA V100 GPUs.

Next, we discuss the choice of hyperparameter. To optimize the performance with respect to
the validation set, the hyperparameter selection procedure is based on a grid search and manual
hyperparameter tuning. For TeaNet, we use a four-layer model. We first set the energy loss coefficient
cle (energy per atom MSE) to 0.0001 and retrained it using cle = 1.0 and cle = 10.0 , whereas the
force loss coefficient clf remained constant at 1.0. The batch size was set to 16, and the learning rate
was initialized to 0.001. For SchNet, we use a four-layer model, where the energy loss coefficient
was set to 0.05, the batch size was set to 32, and the learning rate was initialized to 0.0005. For
PaiNN, we use a three-layer model, where the energy loss coefficient was set to 0.05, the batch size
was set to 32, and the learning rate was initialized to 0.0005. For NequIP, we use a five-layer model
with different maximum rotation orders lmax ∈ {0, 1, 2}. For the five-layer model, the energy loss
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Energy MAE Force MAE Force XYZ MAE
Architecture [meV/atom] [eV/Å] [eV/Å]
TeaNet 19.6 0.174 0.153
SchNet 33.6 0.283 0.247
PaiNN 22.9 0.237 0.208
NequIP (lmax = 0) 52.2 0.249 0.225
NequIP (lmax = 1) 53.3 0.233 0.206
NequIP (lmax = 2) 47.8 0.199 0.175

Table 1: Benchmark performance of NNP for the force and energy prediction for the HME21 dataset.
Energy MAE corresponds to the mean absolute error of the energies of structures divided by their
numbers of atoms, Force MAE corresponds to the mean absolute error of the norm of force vectors,
and Force XYZ MAE corresponds to the mean absolute error of the force vector component. This
table was taken from [15].

Figure 2: Reaction path of the dissociation of the COH molecule on Co surface obtained by TeaNet
trained on HME21. Left: Snapshots of the reaction path (corresponding to initial, transition, and
final state, respectively). Right: Energy trajectory. Ef ,Er,∆E are the activation energy for forward
path, activation energy for backward path, and the reaction energy, respectively. The corresponding
energies obtained by DFT calculation is 0.80 eV, 1.81 eV, and -1.01 eV, respectively [17].

coefficient was set to 0.01 and the learning rate was initialized to 0.001. For lmax ∈ {0, 1}, we found
that setting the batch size to 32 worked best, whereas for lmax = 2, setting the batch size to 64 was
preferable. We set the cutoff distance to 6.0 Å for all architectures.

The results are presented in Table 1. TeaNet performed well in terms of both the energy and force
metrics, which indicates that the TeaNet architecture is suitable for multielement structures which are
far from stable coordination. The trained model is available on [15].

3.2 Reproducing adsorption process with TeaNet trained on HME21

Here, we demonstrate the effectiveness of TeaNet trained on HME21 for surface catalytic reaction.
We used this model to run the same simulations as those presented in Section 1. We found that
both the surface-only structure and adsorbed structure were successfully obtained using structural
optimization calculations. More surprisingly, even reaction pathway analysis using nudged elastic
band (NEB) calculations of the dissociation reactions of molecules on the surface could be performed
as well (Fig. 2). Although there is still room for improvement in accuracy, the activation energy
obtained is comparable to that of the DFT calculation. It means that the energy surface along the
minimum energy path between two stable points, including the transition state, is smooth enough.
This is remarkable result because: 1. Even though it is generally known that the output of neural
networks is not always smooth, the behavior of the learned model is smooth enough in this domain of
inference and acquires the desired behavior up to the second derivative. 2. No information in the
target domain (crystal surface, molecule, adsorption, and dissociation) are included in the dataset. 3.
The dataset size is relatively small.

4 Conclusions

We proposed HME21 dataset, a dataset composed of 24, 949 data points with 37 elements with highly
disordered structures. In our benchmark experiments, TeaNet performs best on HME21 dataset
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in terms of MAE in force and energy predictions tasks and it also succeeded in reproducing the
adsorption process for the structure in the extrapolation region. On the other hand, DimeNet++
trained on a large-scale OC20 dataset has difficulty to perform this simulation task. Our results
emphasize that dataset diversity is essential for developing universal NNPs. HME21 dataset has also
been recently used as one part of the dataset for the development NNPs called Preferred Potential [15]
that is capable of handling any combinations of 45 elements and can achieves desirable performance.
We believe that HME21 can be one of the standard benchmark datasets to stimulate future research in
universal NNP development.

5 Broader Impact

In this work, we propose HME21 dataset for learning NNPs that can support a large number of
elements. With this dataset, we believe that it can be useful towards to goal of creating universal
NNPs. Once an effective universal NNP can be obtained, we can use it for material discovery. New
useful materials can be essential to drive many technology domains such as carbon-neutral energy
and renewable energy systems for sustainable technology development, which can improve people’s
quality of life. On the other hand, similarly to many useful tools in this world, the misuse of material
discovery could also lead to harmful applications, e.g., the creation of weapons or dangerous chemical
substances. This work does not encourage the use of this technology for such applications that have
negative impact to the society. At least, HME21 does not contain radioactive elements. In terms of
privacy impact, we note that HME21 does not have direct negative impact in this perspective because
it does not contain human-related sensitive information since it is an atomic structure dataset sampled
through molecular dynamics simulation.
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