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Abstract

High-dimensional data sets are expected from the next generation of large-scale
surveys. These data sets will carry a wealth of information about the early stages
of galaxy formation and cosmic reionization. Extracting the maximum amount of
information from the these data sets remains a key challenge. Current simulations
of cosmic reionization are computationally too expensive to provide enough real-
izations to enable testing different statistical methods, such as parameter inference.
We present a non-Gaussian generative model of reionization maps that is based
solely on their summary statistics. We reconstruct large-scale ionization fields
(bubble spatial distributions) directly from their power spectra (PS) and Wavelet
Phase Harmonics (WPH) coefficients. Using WPH, we show that our model is
efficient in generating diverse new examples of large-scale ionization maps from a
single realization of a summary statistic. We compare our model with the target
ionization maps using the bubble size statistics, and largely find a good agreement.
As compared to PS, our results show that WPH provide optimal summary statistics
that capture most of information out of a highly non-linear ionization fields.
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1 Introduction

In the early universe, neutral gas accreted to the over-density region inside dark matter halos, and
formed the first generations of galaxies. The intergalactic medium was later ionized by the ultraviolet
photons emitted from these galaxies. Studying this epoch, known as the cosmic reionization, is
crucial to understand the earliest stages of galaxy formation and evolution. Various properties of
high-redshift galaxies are poorly constrained and cannot be measured directly. Instead, studying the
integrated emission from these galaxies over large-scales, a technique known as intensity mapping, is
emerging as a powerful cosmological probe. Several intensity mapping experiments, such as SKA
[1], HERA [2], LOFAR [3], Euclid [4], SPHEREx [5], and Roman [6], are expected to provide
large-scale maps in different bands, including hydrogen ionization maps in the early universe.

Translating these growing observational efforts into astrophysical and cosmological constraints on
our theoretical models of reionization and galaxy formation remains a key challenge. One limitation
is the computational cost of reionization simulations, which is an obstacle to generate enough samples
of detailed large-scale maps, fully explore the parameter space controlling different astrophysical
ingredients, and perform parameter inference. However, many of these experiments focus on statistical
measurements (e.g. the power spectrum). Efficient sampling from summary statistics is therefore
required in order to extract most of information from the upcoming reionization surveys.

In this work, we introduce a non-Gaussian generative model of large-scale ionization maps that is
based on wavelet phase harmonic (WPH) statistics [7, 8, 9]. We compare it to a Gaussian model
constrained by power spectrum statistics. We then use the bubble-size statistics as an independent
metric to compare the input map with our reconstructed maps.

2 Methods

Simulations of cosmic reionization generate ionization fields using the following steps: (i) generation
and evolution of the initial density field. (ii) identification of the sources (galaxies/halos) with group
finder methods. (iii) computation of the radiative transfer to generate the ionization field using the
density and source fields at different epochs. Steps (ii) and (iii) are computationally very expensive,
thus we aim to accelerate them with our fast generative model.

Figure 1: The pipeline of the generative model. This forward generative model (green arrows)
transfers the density summary statistics to the ionization summary statistics and then reconstructs the
ionization field. We test the reconstructed maps using the bubble size statistics against the target map.
This pipeline consists of two parts and the red box indicates the focus of this paper.
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Our paper focuses on the sampling procedure of the following proposed pipeline:

• Create conditional mapping between the summary statistics of the density field and the
summary statistics of the ionization field, using either Multilayer perceptron or Symbolic
regression (This is beyond the scope of this paper).

• Reconstruct the ionization field from their summary statistics (This is the focus of this
paper).

We present a visual summary of the pipeline in Figure 1. To explore the quality of the reconstructed
maps, we use different summary statistics, and compare the results using the bubble size statistics.

To create the input ionization field, we use the semi-numerical simulations SimFast21 [10]. We
choose the physical scale length of the field as 250 Mpc, and the field size as 128×128×128 voxels.
As mentioned earlier, the simulation first generates a density field, identifies the ionizing sources
from the overdensity region, then creates the ionization field. Using SimFast21, we generate 100
reionization realizations and each simulation run takes approximately 5 minutes.

2.1 Generative model

In this section, we build generative models that are adapted from [9], and we make use of the
GPU-accelerated public Python package PyWPH [8] to compute WPH statistics. In general, wavelet
transforms extract information by convolving the input with a series of kernels/filters of different
orientations and scales, and then integrate the resulting convolved input after applying the absolute
magnitude operator as a non-linear activation function [11]. In our case, the filters are defined using
phase harmonics. One can think of wavelets transform as a convolutional neural network without
training since the kernels are fixed to predefined wavelets.

Let ϕi be the operator that computes the ith summary statistics from a map. Samples of these models
are generated by drawing a 128×128 white noise map u0 and iteratively deforming it so that the
statistics of this map match those of the target s (in our case, the ionization map generated from
SimFast21). This is done by minimizing the following loss function:

Li(u) = |ϕi(u) − ϕi(s)|2. (1)

The minimization is performed using an LBFGS optimizer [12]. Additional details on this approach
can be found in [9].

We refer to the generative model that relies on the ϕi operator that computes the power spectrum
as PS model and to WPH statistics as WPH model. The WPH model computes a large number of
coefficients since it captures the higher order statistics (e.g. non-Gaussinity). For the purpose of
building a forward model, we explore different combinations of WPH moments to reduce the size
of coefficients. In this work, we show the model that computes the S(1;1) moments and the scaling
moments L, denoted as S(1;1)+L model. The S(1;1) moment contains similar information to the power
spectrum, and the scaling moments L relate to one-point statistics. A detailed description of the WPH
moments can be found in [7, 9].

In Figure 2, we show how the PS and WPH models deform the white noise over iteration. The PS
model quickly produces patchy ionized region, but has no significant improvement after 20 iterations.
The WPH model shows very different outcome after 20 iterations. For each model, we run the
optimization up to 500 iterations. The calculations are done using 1 GPU v100-16 on the PSC
Bridge-2 cluster [13]. Each iteration takes 0.06 seconds. It takes roughly 30 seconds to generate
a realization. While the PS model has a smaller size of coefficients, it takes roughly 10 seconds
to generate a realization. Our model is faster by a factor of 10-30 as compared to the benchmark
simulation. The pixel values of the generated images vary between -1 to 2, as a consequence of
optimization. Since the neutral fraction can only be between 0 and 1, we clip the values of all the
realizations at 0 and 1 after the optimization. We generate 100 realizations for each model.

2.2 Bubble Size Statistics

To measure the ionization bubble size, we use the mean-free-path method from Tool21cm1[14].
This method was introduced in [15], and was deeply discussed in [16, 17, 14]. It first converts the

1https://tools21cm.readthedocs.io/
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