
Towards solving model bias in cosmic shear
forward modeling

Benjamin Remy∗, François Lanusse and Jean-Luc Starck
Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191, Gif-sur-Yvette, France

Abstract

As the volume and quality of modern galaxy surveys increase, so does the dif-
ficulty of measuring the cosmological signal imprinted in galaxy shapes. Weak
gravitational lensing sourced by the most massive structures in the Universe gener-
ates a slight shearing of galaxy morphologies called cosmic shear, key probe for
cosmological models. Modern techniques of shear estimation based on statistics
of ellipticity measurements suffer from the fact that the ellipticity is not a well-
defined quantity for arbitrary galaxy light profiles, biasing the shear estimation.
We show that a hybrid physical and deep learning Hierarchical Bayesian Model,
where a generative model captures the galaxy morphology, enables us to recover
an unbiased estimate of the shear on realistic galaxies, thus solving the model bias.

1 Introduction

Over the next couple of years, a new generation of wide-field optical galaxy surveys will be coming
online, starting with the ESA Euclid mission [1] and the Vera C. Rubin Observatory Legacy Survey of
Space and Time [2], soon followed by the Roman Space Telescope [3]. At the core of the cosmology
science that these surveys will enable is the measurement of the weak gravitational lensing effect, a
very subtle shearing of the apparent images of distant galaxies in the presence of massive structures
along the line of sight. On cosmological scales, this effect, also known as cosmic shear, is an
invaluable probe of the total matter content of the Universe, and will play a key role in further
constraining and testing our cosmological model over the next decade.

Despite over 20 years of research in this field, unbiased measurements of gravitational shear from
observed galaxy images remains one of the most challenging aspects of the scientific exploitation of
these surveys. The prevailing strategy for measuring shear from data has been to build estimators
of the ellipticity of galaxy light profiles, due to the fact that one can in theory relate how a galaxy
ellipticity e changes under a gravitational shear γ, as eobs ≃ ei + γ. Under the assumption that
galaxies should have no preferential intrinsic ellipticity, a simple estimator for γ can therefore be
constructed from γ̂ = ⟨eobs⟩ = ⟨ei⟩+ γ. However, to this day, no shear measurement algorithm has
proven to be unbiased.

In fact, state-of-the-art approaches for shear measurement [4, 5] no longer attempt to build an
unbiased shear estimator from images, but rather calibrate the shape measurement methods estimating
a multiplicative and an additive bias. There are many factors contributing to these biases, but a
fundamental issue comes from the fact that the ellipticity e is not a well defined quantity for arbitrary
galaxy light profiles.

In this paper we propose a new paradigm for cosmic shear estimation where we no longer rely on
ellipticities anymore. We propose to forward model the galaxy images at the pixel level, similarly to
[6], but using non-parametric galaxy light profiles. The main idea is to train a deep generative model

∗Corresponding author: benjamin.remy@cea.fr

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



to learn galaxy morophologies, which can then be used as part of a hierarchical Bayesian model, a
hybrid deep learning and physical model, simulating the observations and used to infer the shear.

The purpose of this paper is first to demonstrate that using parametric light profiles as part of the
forward model induces a bias in the shear estimation, which we call a model bias, and then to show
that this bias can be removed by using a deep generative model for the morphology. We show in this
preliminary study, that using a hybrid deep learning-physical Bayesian forward model can not only
solve the model bias, but also provide uncertainty quantification to the shear estimation.

(a) Realistic galaxies fitted by a parametric profile (b) Realistic galaxies fitted by a deep morphology model

Figure 1: The first row of images correspond to observed galaxies. The second row corresponds to
the light profiles Maximum a Posteriori fits, convolved with their PSFs. The third row shows residual
images between the observations and the model fits. Column (a) is using Sérsic model as light profile
and column (b) is using deepgal model as light profile.

2 Forward modeling weak lensing observations at the pixel level

From a Bayesian perspective, making the joint inference of cosmic shear and galaxy morphologies
means estimating the joint posterior distribution p(G, γ|D), where G = {zi}i=1...N is the set of
morphology parameters and D = {di}i=1...N is the set of observed data. The Bayes identity tells us:

p(G, γ|D) ∝ p(D|G, γ)p(G, γ), (1)

where p(D|G, γ) is the data likelihood given by the forward model described bellow. Since the
intrinsic morphology of galaxies are independent of the cosmic shear, then p(G, γ) = p(G)p(γ),
where p(G) and p(γ) are respectively the prior distributions of the morphological parameters and of
the cosmic shear.

We show the probabilistic graphical model in Figure 2. Nodes denote random variables and arrows
conditional relation between them. White nodes corresponds to random variable on which we do
the inference on, conditioned on the shaded nodes corresponding to observed variables. Dot nodes
correspond to fixed variables, e.g. neural network weights θ. In this paper we compare two forward
models: (1) using Sérsic law and (2) using the deepgal model to generate the galaxy light profile.
Once the galaxy light profiles are drawn, we shear images with a constant value γ shared by all the
galaxies. Each sheared galaxy i is then convolved by its Point Spread Function (PSF) Πi. Assuming
Gaussian noise corruption, the resulting image is therefore evaluated by a Gaussian likelhood of
variance σ2

pix.

galaxies i = 1 . . . N

di γ

σpix

zi

θ

Πi

Figure 2: Probabilistic Graphical Model.

Sérsic model The light profile of the Sérsic model is
given by the following parametrization: I(r) = F ×
I0 exp(−bn[(

r
rhlr

)
1
n − 1]), where rhlr is the half-light-

radius, I0 is a normalization factor such that the integration
of I over all the space is F , which corresponds to the flux
of the galaxy. n is called the Sérsic index and bn is a
dimensionless constant depending on n. The galaxy is
then sheared with parameters e = (e1, e2) corresponding
to its ellipticity. Finally, since the real galaxy may not
be perfectly centered in the postage stamp, we add two
shift parameters sx and sy. Therefore, each galaxy i has
a set of parameter zi = {n, rhlr, F, e1, e2, sx, sy}i. Prior
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distributions and parameters follow empirical distributions of the COSMOS shape catalog and are
described in subsection A.1.

Deepgal model deepgal is a VAE-based model, proposed in [7], generating complex galaxy light
profiles. In this model, the observations are generated following a random process mapping a latent
space representation zi ∈ R16 to the observed image di following the probabilistic model illustrated
in Figure 2. The neural network weights θ of the VAE are trained maximizing the Evidence Lower
Bound (ELBO) of the data. Moreover, another generative model was trained on top of the VAE to
learn latent space distribution using Masked Auto Regressive Flows [8]. This model was trained on
the HST/ACS COSMOS survey postage stamps.

In the weak lensing regime, the shear is very small, therefore we can assume that it does not change
the morphological statistics of the training sample. Thus, the model can be trained once, a priori, over
a large catalog of galaxies and be used to perform the joint inference of the latent variables and the
cosmic shear. For both light profile models, we denote the generated image I0.

Cosmic shear In this model every galaxy image is sheared by a constant value γ = γ1 + iγ2 shared
by all the galaxies. The image shearing transform, denoted I0 ⊗ γ, is given by the following pixel
coordinate change:

(
x′

y′
)
= S(γ)

( x
y

)
, such that S(γ) = 1√

1−|γ|2
( 1+γ1 γ2

γ2 1−γ1

)
.

Convolution with the PSF The Point Spread Function (PSF) model is assumed to be known and
exact for each galaxy. We draw the PSF evaluated at the galaxy i position, denoted by Πi, in Fourier
space and then multiply it to the Fourier image of the light profile before returning in the real space,
resulting in an image I, such that Ĩ = (Ĩ0 ⊗ γ) · Π̃.

Noise corruption We assume a known fixed gaussian noise identical for all the galaxies. For
simplicity, all of the galaxies in our observations are corrupted by a constant Gaussian noise of
variance σ2

pix, as well as for our forward model. In a more realistic scenario where we would have
information about the noise correlation properties for each postage stamp, one could consider a noise
model per galaxy. The likelihood is therefore given by

p(D|G, γ) ∝
∏

i=1,...,N

N
(
di

∣∣∣F†
[(

Ĩ0,i ⊗ γ
)
· Π̃i

]
, σ2

)
, F† is the inverse Fourier operator. (2)

3 Illustration on realistic data
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Figure 3: Shear marginal posterior contours against ground truth γ = (−0.03, 0.03). The left panel
shows the posterior using the Sérsic light profile over the parametric observations. The middle panel
shows the posterior using the Sérsic light profile over the realistic galaxies. The right panel shows the
posterior using the deepgal model over the realistic galaxies.

3.1 Simulating observations

We designed a toy model where galaxies are assumed to be already detected, deblended and centered in
postage stamps, so that we only need to simulate the light profile, shearing transform and convolution
with the PSF. In order to demonstrate the model bias, we distinguish two sets of observations.

3



(1) generated with parametric galaxy light profiles using a Sérsic model and (2) using realistic
galaxies based on the galaxy postage stamps from the COSMOS HST Advanced Camera for Surveys
(ACS) field [9–11]. We used the postage stamps from [12] and Sérsic fit parameters compiled in
[13]. Because the unconvolved galaxies are very noisy, we used the Auto-Encoder from [7] to get
denoised version of unconvolved galaxies, therefore this is not a demonstration on real galaxies yet.
However, the purpose of this paper is to demonstrate the model bias, so we find that realistic galaxy
morphologies that cannot be captured by analytic profiles are sufficient to illustrate the argument.

Each set of observation is a field of 256 galaxies, generated from the COSMOS catalog, with the
following cuts: n > 0.4, rhlr > 0.2 and 23.5 < i+ < 25.2 so rather faint galaxies. That way the
entire galaxy is in the postage stamp, is not too peaky and not too resolved to be close to a Sérsic
model. Every postage stamps were corrupted by a Gaussian noise of standard deviation σpix = 0.01.
In order to simulate shearing, we removed any shear present in the selected sample from the COSMOS
catalog, by adopting the same strategy than in the GREAT3 Challenge [14], i.e. doubling each galaxy,
and rotating the doubled galaxies by 90°, as well as their PSF, to cancel the overall sample shear and
then apply the same constant shear to every galaxy γ = (−0.03, 0.03).

3.2 Approximate inference with mean-field VI

In order to estimate the posterior distribution p(G, γ|D), we relied on approximate inference using
mean-field Variational Inference (VI), where we approximate the posterior distribution using a
parametric distribution qϕ(G, γ) = qϕγ

(γ)
∏

i

∏
j qϕi,j

(zi,j), parameterized by ϕ. We used Normal
distributions qϕi,j to approximate the posteriror of parameters i of the jth galaxy, so the parameters
ϕi,j = (µi,j , σi,j) correspond to means and standard deviations. Similarly, qϕγ

is a 2d-diagonal
multivariate Gaussian. The parameters ϕi,j and ϕγ are then optimized maximizing the ELBO:

ϕ∗ = argmax
ϕ

E(G,γ)∼qϕ [log p(G, γ,D)− log qϕ(G, γ)] (3)

This remains a very simplistic approach, which does not assume any correlation between variables. A
more accurate model would condition the morphological parameters on the shear. In principle, the
most accurate method would be to run a Markov Chain Monte Carlo, but several experiments showed
that sampling based-methods are too computationally expensive for such high-dimensional problem.

3.3 Identifying and solving the model bias

We ran three sets of experiments to demonstrate the model bias. First fitting the fully parametric
model to the parametric observations. Then fitting the same parametric model to the realistic galaxies
and then fitting the hybrid model to the realistic galaxies. We used a Sérsic law as light profile
as proposed in [6]. One could argue that there exist more complex parametric profiles such as the
bulge+disk model which could reduce the aforementioned bias, but we propose here a model which
does not rely on ellipticities and in principle can capture any complexity of galaxy morphologies.

First, as illustrated in Figure 3 (a), the inferred shear using the parametric model on the parametric
observations is unbiased. This was indeed expected since the observations and the model are exactly
the same. Secondly, Figure 3 (b) shows that the parametric model induces a bias in the shear
estimation when the galaxy morphologies are no longer elliptical. Besides, one can observe the
non-zero residuals in the Figure 1 fit to real galaxies, illustrating the model discrepancy when applied
to complex morphologies. Finally, Figure 3 (c) shows that when we substitute the parametric light
profile model by the deepgal model, the shear estimation becomes unbiased. One can notice that
the uncertainties using the generative model are smaller than for the Sérsic model, but these contours
are not representative of the error bars due to the mean-field approximation.

4 Discussion and conclusion

We have presented in this work the necessity of an accurate light profile model for forward modeling
of the cosmic shear. We have shown that a hybrid physical and deep learning HBM has the potential
to solve the model bias, being able to capture the complex morphology of galaxies and simulating
physical processes such as shearing transform and convolution by the PSF. We identify many
directions of research towards a real cosmological analysis by forward modeling. On the one
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hand, many assumptions could be relaxed by building a more complex hierarchical model, e.g.
parametrizing the PSF model and jointly inferring it along with the shear. Concerning the detection
and deblending of galaxies, similar work have already been proposed, e.g. BLISS [15]. On the other
hand, accurate uncertainty quantification could be enabled by scaling MCMCs for HBMs or using
neural density estimator to capture the shape of the joint posterior distribution.
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6 Broader impact

The methodology described here finds many useful applications within and outside of cosmology.
Hierarchical Bayesian Models are very efficient tools for statistical inference but can suffer form
model misspecification. Combining deep generative models and physical models seems to be a
promising approach to solve this problem. We believe this work does not entail any negative
consequences or ethical issues.
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A Appendix

A.1 Prior distributions and parameters for Sérsic light profile

The following distributions were fitted from the COSMOS shape catalog [12, 13].

• log10 rhlr ∼ N (−0.68, 0.30)

• log10 n ∼ N (0.1, 0.39)

• log10 F ∼ N (−1.97, 0.53)

• e1/2 ∼ N (0, 0.28)

• γ1/2 ∼ N (0, 0.09)

• sx/y ∼ N (0, 1)
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