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Abstract

An important class of techniques for resonant anomaly detection in high energy
physics builds models that can distinguish between reference and target datasets,
where only the latter has appreciable signal. Such techniques, including Classifica-
tion Without Labels (CWOLA) and Simulation Assisted Likelihood-free Anomaly
Detection (SALAD) rely on a single reference dataset. They cannot take advantage
of commonly-available multiple datasets and thus cannot fully exploit available
information. In this work, we propose generalizations of CWOLA and SALAD for
settings where multiple reference datasets are available, building on weak supervi-
sion techniques. We demonstrate improved performance in a number of settings
with real and synthetic data. As an added benefit, our generalizations enable us to
provide finite-sample guarantees, improving on existing asymptotic analyses.

1 Introduction

Due to the vast parameter space of Standard Model extensions and to the lack of significant evidence
for new particles or forces of nature, a new model-agnostic search paradigm has emerged. Many
of these anomaly detection (AD) strategies are enabled by machine learning (see e.g. [L1]) and
the first results with collision data are now available [3| [1]. One way to characterize AD methods
is based on their physics assumption of the new phenomena [[12]. Strategies that assume the new
physics is “rare” [14]] estimate (explicitly or implicitly) the data density and focus on events with
low density. In contrast, techniques that assume the new physics will manifest as an overdensity
in phase space use likelihood ratio methods to compare a reference dataset to a target dataset. The
latter approach has been extensively studied in the context of resonant anomaly detection, where
one reasonant feature (usually a mass) is used to create a sideband region (reference dataset) nearly
devoid of any anomalous events and a signal region (target dataset) that may contain anomalies. The
reference dataset is used to estimate the presence of anomalies in the target dataset via interpolation.

Many existing approaches are defined using one reference dataset and one target dataset. However,
in practice one can have access to or construct multiple references. First, there may exist multiple
resonant features that can be used to construct sideband and signal regions. For instance, when
a particle decays into two new particles, the decay products can be used to construct all three
intermediate resonances, a setting present in the LHC Olympics Dataset [13]]. Second, for the
same dataset, multiple, independent Standard Model simulators can produce a reference dataset (e.g.
Pythia [21]] and Herwig [4]). Using multiple reference datasets may improve performance, but it is
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not clear how to incorporate all of their information when using existing methods designed for a
single set.

We explore two generalizations of resonant AD to multiple reference datasets. First, we consider
Classification Without Labels (CWoLa) [16} 16| [7], in which the reference is simply the sideband
region—a form of weak supervision where the noisy label of “signal” is assigned to events in the
signal region and the noisy label of ‘background’ to events in the sideband region. We propose
a new method, Multi-CWoLa, that builds multiple reference datasets by constructing signal and
sideband regions along different resonant features. We consider a point’s membership in each
feature’s signal region as a noisy vote for anomaly, learn weights on each vote and aggregate them to
produce an overall prediction. We demonstrate MULTI-CWOLA’s performance on the LHS Olympics
Dataset [13]].

Second, we study Simulation Assisted Likelihood-free Anomaly Detection (SALAD) [2]. In this
method, a reweighting function between a reference simulation dataset and a target dataset is learned
in the sideband conditioned on the resonant feature. The simulated events in the signal region are
reweighted by interpolating this function and then are used to distinguish anomalies in the target
dataset. We extend this to the case of multiple simulated datasets, each of which may make different
approximation choices and thus provide complementary accuracy when using SALAD. We introduce
MULTI-SALAD, which combines the simulated datasets accordingly and then reweights, with the
key finding that combining data helps when each simulator approximates different components of the
background well. We demonstrate MULTI-SALAD’s performance on synthetic data.

Finally, we study the finite sample guarantees of our proposed methods. Many resonant AD methods
have optimality guarantees in some asymptotic limit, but there is no first-principles understanding of
the methods’ performance with finite samples. We draw on results from statistical theory to begin
a formal study of resonant AD methods with limited data. Our results lay a foundation for future
investigations into the finite sample properties of AD and related methods.

2 Background

We have an input space of discriminating features x € X and k resonant features m =
[m!, ..., mF] € R*. Associated with a point (-, m) is an unknown label y € ) for ) = {0, 1} (back-
ground vs. signal). Points (x, m, y) are drawn from a distribution P with density p(-). For a resonant
feature m’ € R, an interval Z,,,; € R is used to define a signal region SR = {(z,m) : m* € Z,,: }
and a sideband region SB = {(z,m) : m* ¢ Z,,:}. We assume that the sideband region contains
little to no signal, i.e., p(y = 1|(x,m) € SB) =~ 0. Our goal is to construct a predictor f : X — ),
outputting a value § given (x, m), to perform anomaly detection.

3 MULTI-CWOLA: Learning from Multiple Resonant Features

We introduce MULTI-CWOLA, an approach to anomaly detection that uses multiple reference
datasets and is built using principles from the area of weak supervision [19}[10] .

Standard CWOLA We have one unlabeled dataset D = {(x;,m;)}?_, with one resonant feature
(k = 1) that we want to use to learn f. We use m to construct the signal and sideband regions,
Dsr,Dsp C D, where Dsgp = DN SR and Dgg = D N SB, with distributions psr and psp
respectively. With the intuition that there are more anomalies in the signal region, we express each
distribution as a mixture of signal and background components with weight 0 < nggr,nsp < 1:
psr(x) = nsrp(xly = 1) + (1 — nsr)p(zly = 0), and psp(z) = nspp(zly = 1) + (1 -
nss)p(zly = 0).

Under this construction, the density ratio of the mixtures Zigigg can be written in terms of the ratio of
; _ plzly=1) psr(z) _ msrr(z)+l-msr :
the signal and background components, r(x) = p(aly=0)" 35 pop(a) = nenr(n)EI=nes " Assuming

nsr > Nsp (e.g. more signal in the signal region), the mixture ratio is monotonically increasing in

r(x). Therefore, we train a classifier f to learn %’Ei; by distinguishing between Dgg and Dgp,

and this f provides information about (x) and thus can be used for anomaly detection.



MULTI-CWOLA Method Intuitively, CWOLA uses the resonant feature m as a noisy label that
identifies the signal vs sideband region and then trains a classifier using these through the mixture
component membership. This idea leads to a simple question—if more than one such feature is
available (K > 1), how can the multiple noisy labels best be utilized? We tackle this question using
principles from weak supervision [[19, 20} [10].

In our approach, we split D along each resonant feature m' to produce multiple pairs of datasets
Dsp, and Dgp, for each i € [k] based on membership in I,,,:. A straightforward way to use all
datasets (Dsp,, Dsr, ) - - -, (Dsn,; Dsr,) is to apply standard CWoLa k times to train k classifiers
that we can then ensemble. Instead, in MULTI-CWOLA, we directly aggregate the noisy membership
labels provided by thresholding resonant features and training a model on the aggregated label.
Specifically, suppose that the mixture membership for a datapoint (z,m) is given by the label
M;(m) € {0,1}, where M;(m) = 0if x € Dgp, and 1 otherwise. To aggregate all noisy labels
M(m) = {M;i(m),..., M(m)}, we draw on weak supervision, a recent class of techniques that
combines the outputs of multiple weak sources using learned weight parameters and produces
estimates on the true label without requiring any labeled data. That is, we can aggregate M (m)
according to each resonant feature’s quality, without needing to know the true presence of an
anomaly. In particular, we first learn the probabilistic graphical model for the binary distribution
p(y|M(m)) [10]. Since y is unknown, we learn the parameters of the distribution using latent variable
estimation on D. Then, weak labels § are produced from our estimated distribution p(y|M(m)) for

2 € D. Finally, an end model f is trained with (z, §) to perform anomaly detection. See Algorithm
in Appendix [C|for explicit algorithm statements.

Theoretical Results Assuming p(y, M(m)) can be parametrized as a class of graphical models
(see Equation (I))), MULTI-CWOLA offers finite-sample generalization guarantees. Suppose the

downstream model f trained on ¢ belongs to class F. Define a loss function /¢ : ) x ) — R and let
the expected loss of f be Le(f) := Ep,.,. [lc(f(x),y)] on true labels. Then, the optimal classifier is
J* =argming. » Lo (f), which is achieved with unlimited labeled data. Let the empirical loss of f on

gbe La(f) = LS 1 lo(f(;), §i). Then, the classifier we learn is f= argmin ;. » Lo (f). Note
that this construction is different from the standard empirical risk minimization (ERM) loss on labeled
data and thus Lo (f) does not asymptotically equal Lo (f). We aim to minimize the generalization

error Lo(f) — La(f*). In Theorem (Appendix @) we present a bound on Lo (f) — Lo (f*). We
find that there are four quantities controlling the bound: 1) the Rademacher complexity of F, which
describes the model’s expressivity and can be readily computed for a variety of classes (e.g., decision
trees, two-layer feedforward networks); 2) the noise from learning with n points; 3) the noise from
using ¢ rather than true y; and 4) the gap between p(y|m) and p(y|M(m)) (e.g. how much we lose
about the resonant features by only modeling mixture membership). Surprisingly, we find that 2) and
3) both scale in O(n~'/2) and go to 0 for large n.

Evaluation In Figure [1| (Left), we compare MULTI-CWOLA with standard CWOLA as well as
two other baselines. We use simulation data from the LHC Olympics Dataset [13]]; in particular
from Pythia 8 [21]], where the signal is boson decay and the background is generic 2 — 2 parton
scattering. This dataset contains 5 features; in the standard CWOLA setup, we use one thresholded
resonant feature (k = 1) and use 4 discriminative features as x. For MULTI-CWOLA, we have
generated & = 3 mixtures by varying how the 3 resonant features (the jet masses in addition to the
dijet mass) are thresholded and use 2 discriminative features as z. We have two other baselines that
utilize 3 resonant features: CWOLA-intersect defines the signal region as the intersection of the
resonant features’ signal regions, e.g. SR = SR; N SRo N SR3, but this can be overly conservative.
CWOLA +z thresholding keeps one resonant feature as the noisy label § = M;(m), and includes
the remaining thresholded features as discriminative features {Ma(m), Ms(m),x}. We vary the
number of samples available on a logarithmic scale from n = 59 to 6003 and plot the AUC averaged
over 5 runs per sample size. We find that MULTI-CWOLA offers a higher AUC and lower variance,
especially when there is limited data.

4 MULTI-SALAD: Learning From Multiple Simulations

We introduce MULTI-SALAD, an AD approach that uses multiple simulation datasets.



10° ¥ — Sim 1 SALAD
Sim 2 SALAD

—— Multi-SALAD
SALAD-Switch

Rejection (1/False Positive Rate)

—¢— CWola
0.3 CWola + Intersect 10t
—¢ CWola + x thresholding
0.2 —8— Multi-CWolLa
100
102 B 10° 0.0 0.2 0.4 0.6 0.8 10
Amount of Training Data (log scale) Signal Efficiency (True Positive Rate)

Figure 1: Left: Comparison between CWOLA and MULTI-CWOLA. Using multiple mixed samples
helps performance across a range of dataset sizes. Access to multiple weak sources enables better
accuracy and lower variance compared to the single-feature version. Right: Signal efficiency to
rejection of MULTI-SALAD versus other baselines (weighted and unweighted).

Standard SALAD We have a background simulation dataset D5™ = {(x;, m;) 1= with y; =0
for all i in addition to one true dataset D. D™ is drawn from some distribution Pxi,, with density
Dsim- While CWoLA learns the likelihood ratio between the signal and sideband regions of D alone,
SALAD utilizes D*'™ as well. Note that if pgiy, is equal to pgata(-|y = 0), we could directly train
a model to distinguish between D and D™ in the signal region to get a classifier that could detect
anomalies. However, since D*'™ may not match the true background data, we instead first need to
learn a reweighting function to capture the differences between D™ and D’s background data, and
then we train a model to distinguish between D and the reweighted D™ in the signal region.

Formally, given fixed SR and SB for both datasets, the method can be broken into two steps. 1)

A classifier § is trained to learn the weight w(xz, m) = % by distinguishing between

$m = DM N SB and Dgp. 2) Using a loss function Lg weighted using the estimated @ (x, m)
applied to DEW = D™ N SR, a classifier h is trained to distinguish between Dgr and DU If the
estimate w(x, m) is exactly equal to w(z, m) (e.g. § is Bayes-optimal), then the second step will be

equivalent in expectation to learning the ratio %, from which one can detect anomalies.

MULTI-SALAD Method Now we have multiple simulation datasets D™, ..., D{™. One approach
would be to maintain distinctions among simulations by reweighing each pair to learn k& weight
functions w;(x, m), and then using one overall loss function that weights points from each ngiﬁ" :
with w;. However, it has been shown that importance reweighting, despite working in expectation,
can be highly unstable and result in poor performance of tasks on the target data D [9]]. To understand
why, [8]] showed that the generalization error of an empirical loss function with importance weights

w depends on the magnitude and variance of w. Applied to our setting, it suggests that the more

%, and the model
may instead pick up on differences between D and the reweighted DI that are noise rather than
the anomaly. As a result, aggregating individual SALAD outputs can be equivalent to ensembling

many poor classifiers.

inaccurate the simulation is, the less the reweighted loss recovers the true

Given these observations, MULTI-SALAD uses multiple simulation datasets in a very simple yet
theoretically principled way: control the magnitude of the overall w by combining all the D™ to
produce one large simulation dataset D*™ whose distribution best approximates the true background
p(z|y = 0), and then use standard SALAD with D*™ and D. Note that this approach both improves
sample complexity and can “suppress” a simulation that on its own has high w, while the approach
of learning k weight functions would not offer such improvements. In Algorithm 2| we write this
procedure out where we simply concatenate all D™ together. However, with domain knowledge on
the strengths and weaknesses of each simulation across features, one could produce D*™ by sampling
accordingly from each. We leave this direction for future work.



Theoretical Results We now present a finite sample generalization error bound on MULTI-SALAD

that also applies to SALAD. Define n°% as the number of points from D and psim belonging to
the signal region, and n°F as the number of points belonging to the sideband. Let n2F be the
number of points in D¥™ belonging to the signal region. To measure the generalization error, recall

w(z,m) = w and let w be the classifier §’s estimate. We denote h as the reweighted
Psim (z,m]y=0)

classifier. Let h* = argmin,,,, Ls(h,w) and let h = argming, ., Lg(h, ). We aim to bound

Ls(h,w)—Lg(h*,w). Define W = max,, ,,, w(x, m) as the maximum ratio betweeen the simulation
and true background. In Theorem 2]in Appendix [D] we show an upper bound on generalization error
Lg(h, ) — Lg(h*,w) that scales in (n5)~1/2, and (n5E)~1/2, where the former comes from the
initial reweighting step while the latter comes from the weighted classification step. The bound is
also dependent on the Rademacher complexities of both classifiers g and h used. Finally, our result
demonstrates that a larger W increases the generalization error bound.

Evaluation To demonstrate how MULTI-SALAD can improve over using only one simulation
and over using simulations separately, we consider a synthetic experiment with two simulation
datasetsE] The anomaly distribution is only slightly different from the background data, which follows
a symmetric Gaussian mixture. On the other hand, each simulation has a distribution that matches
only one mixture component of the background data. We assume that the signal and sideband regions
are the same over « (e.g. m and x are independent). A visualization is shown in Figure[?]and details
are in Appendix

Intuitively, the anomaly is only slightly different from the background data, which makes it important
to learn a good reweighting function from the simulations. Because each simulation alone diverges
greatly from the data for one mode, each individual reweighting may not approximate the true
P(-|ly = 1) well, as suggested by Figures[3|and[4] On the other hand, if we combine both simulation
datasets together, the aggregate distribution has smaller weights with lower variance, which can allow
for more accurate reweighting. In Figure[I] (Right), we present the signal efficiency to rejection rate
of four methods: 1) MULTI-SALAD; 2) SALAD on the first simulation; 3) SALAD on the second
simulation; and 4) SALAD-SWITCH, where we learn k separate w; functions and switch among
them in the reweighted loss function. Table [I|contains the accuracy and AUC scores for each method.
Averaged over 10 random seeds, MULTI-SALAD outperforms other methods. The signal efficiency
to rejection rate for each of the 10 runs is available in Appendix [E]

Simulation 1 Simulation 2 Simulation 1 and 2
Method None SALAD None SALAD None SALAD-SWITCH | MULTI-SALAD
Accuracy 43.849 .2 62.5438 8 42.74+3.6 64.3112.3 50.0+0.0 54.346.2 64.8419.3
AUC 28.5+4.2 80.7414.5 274445 78.74+18.2 15.445.3 T4.7T+17.0 90.8+10.2

Table 1: Accuracy and AUC scores (%) for MULTI-SALAD on two simulation datasets. We compare
to SALAD-SWITCH (different reweighting), as well as standard SALAD on individual simulations
and no reweighting. Performance is averaged over 10 random runs with one standard deviation
reported.

5 Conclusion

We extend two resonant AD approaches to incorporate multiple reference datasets. For MULTI-
CWOoLA, we draw from weak supervision models to handle multiple resonant features. For MULTI-
SALAD, we combine multiple simulation datasets to best approximate the background process.
Future work includes 1) exploring MULTI-SALAD?’s applicability on real data and algorithms for
sampling from simulation datasets 2) extending MULTI-CWOLA to model more complex relation-
ships among resonant features and 3) using such approaches together over multiple simulations and
resonant features, effectively utilizing as much information as possible.

'We find that the differences between the simulations in the LHC Olympics are not enough to see a noticeable
gain from MULTI-SALAD over SALAD.
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A Potential Broader Impacts

Anomaly detection is used throughout science and industry and so our observations may be useful to
setups beyond collider physics. These tools are designed to find group anomalies and so even when
applied to society at large, there is no way to single out individuals.

A.1 Code and Data

The code for this paper can be found at https://github.com/mayeechen/
anomaly-detection-multi and the physics data sets are hosted on Zenodo at [[15]].

B Appendix

We provide algorithmic details for MULTI-CWOLA and MULTI-SALAD in Section [C| In section[D]
we provide proofs for our theoretical results. In section[E] we provide experimental details.

C Additional Algorithmic Details

C.1 MuLTI-CWOLA Algorithm

MULTI-CWOLA is described formally in Algorithm[I] Given a dataset D with k resonant features
with corresponding thresholds Z,,, for signal vs sideband region, we can construct a binary vector
per (x,m), M(m) = [Mi(m), ... Mx(m)] € {0,1}*, where M;(m) = 1 if  belongs to the ith
resonant feature’s signal region. The goal is to learn how to produce a label from k noisy “votes”
M(m).

To aggregate M(m) into a label, we draw from weak supervision and aim to compute p(y|M(m)),
the distribution from which we produce an estimate 3. We assume p(y, M(m)) can be written as a
graphical model as follows:

k

1 - ~ ~

ol MOm) =  exp (0,7+ Y- 6.35:(0)7 ) M
i=1

where 0, 0; for i € [k] are the canonical parameters of the distribution, Z is for normalization, and §

and M;(m) are y and M;(m) scaled from {0, 1} to {—1, 1}. Intuitively, 6; represents the strength of
the correlation between M;(m) and y. This model also implies that M, (m) L M, (m)|y; that is, the
mixture membership components (i.e., the resonant features) are conditionally independent given y.

With the above construction, we learn g as follows. First, we estimate p(M;(m)|y), which corresponds
to the ith resonant feature’s accuracy. This can be done by adapting the triplet approach from [10].
First, we draw triplets of resonant features a, b, ¢ € [k]. If the distribution on y, M(m) follows the

graphical model in (T, it holds that E@Ma(m)]]E[ﬂ]\Ajb(m)] = E[M, (m)Mp(m)]. Writing one such
equation for each pair in the triplet (a, b, ¢), we have that

E[JM, (m)|E[FM,(m)] = E[M,(m)M,
E[jM, (m)|E[GM.(m)] = E[M,(m)M.(m)]
E[§M, (m)|E[FM.(m)] = E[M,(m)M,

since 2 = 1. Solving this system, we obtain

E[Ma(m)ﬁb(m)]E[Ma (m)Mc(m)]

B[ Mq(m)]| = E[M, (m) M, (m)]

)

and similarly for b and c. We assume that each signal region is positively correlated with the true

signal, which allows for us to uniquely recover E[§M, (m)]. Next, we can use E[jM,(m)] to obtain
p(My(m)]y) due to the structure of the graphical model in (I). From these, we use Bayes’ rule


https://github.com/mayeechen/anomaly-detection-multi
https://github.com/mayeechen/anomaly-detection-multi

Algorithm 1 MULTI-CWOLA
1: Input: Dataset D = {(x;,m;)}i_,; thresholds Z,,,: that split D into signal and sideband regions,
Dsr, and Dgp, respectively, for each m?; class balance probability of anomaly p(y = 1)
1 x¢€ DSRi
0 ze€ DSB,; ’

2: For each resonant feature m?, define M;(m) = {

3: for each triplet a, b, ¢ € [k] do

4:
0 1= B[V () My (m)| B[V () M (m)] /BN, () Mo ()| @)
= ] [N, (m) My (m) JE (M, () M (1) /B M, (m) M. (m)]| 3)
e 1= \/ [N, (m) M. (m) B[V, (m) M () /B M, (m) My ()], )

where [ is an empirical estimate of the expectation over D.

5: end for

6: Set p(M;(m) = 1|y = 1) = p(M;(m) = 0y = 0) = p(M;(m) = y) = >

7: Compute estimate p(y = 1|M(m)) o« [[:2; p(M;(m)|y = 1)p(y = 1).

8: Construct ¢ for each (z,m) € D.

9: OQutput: Classifier f for anomaly detection trained on {(z;, ;) }7_,

to produce an estimate of p(y|M(m)) = WES p(gi(ﬁglg)z)l)p(yzl) , where we assume that the class

balance p(y = 1) is known; otherwise, it can be estimated [20]]. In practice, all of these quantities are
empirical estimates, starting with terms such as E[M, (m)M,(m)] = LS Mo(a) My(;).

Finally, with labels §) for each (z;,m) € D, we train a classifier f on points (, §). This procedure is
summarized in Algorithm [I]

C.2 MULTI-SALAD Algorithm

MULTI-SALAD is described formally in Algorithm 2] We have simulation datasets D§™, ... Djim,
where D™ = {(z;, m])}”“”“ and all points belong to the background (y = 0). As discussed in
Sectlon@ we propose using these simulation datasets by aggregating them into a single simulation
dataset D¥'™ (whether it be with uniform or stratified sampling, etc.) Then the rest of this section
proceeds as follows and is a review of the standard SALAD method.

Reweighting First, we learn weights to correct for the bias of the simulated background data. We
split the both simulation and true data along m to produce sets D?}%, Df&g‘ and Dgsgr and Dsp. We
train a classifier over DY% and Dgp to distinguish between simulation and real data in the sideband
region. That is, we traln a blnary classifier § over points (x, m, z) in the sideband where x, m is either
from psim (-|y = 0) (z = 0) or p(:|y = 0) (z = 1), where we recall that simulation data only contains
y = 0, and no anomalies are present in the sideband. Denote ¢ as the joint density of (z,m, z). We
define the weight as the estimated likelihood ratio

g(z,m) ~ q(z = 1]z, m) _ q(z,mlz=1) . qg(z=1)
1—g(@,m) q(z=0lz,m) q(z,m|z=0) q(z=0)

&)

w(x,m) =

_q(z,mlz=1) _ p(z,mly=0) (6)
q(l', m\z = 0) psim(xam|y = 0) '

Here, we assume that g(z = 1) = ¢(z = 0) (i.e. balanced simulation and real dataset, which we can
always ensure by generating more or less simulation data). Equality is obtained in the expression
above when g is Bayes-optimal.

Training The above w(x, m) is defined on the sideband region. Next, we interpolate and correct
the bias of the simulation in the signal region. Let DY be the set of simulation data in the signal
region of size n3%, and let Dgp be the set of true data in the signal region of size niﬁa, for a total

sim?

10



Algorithm 2 MULTI-SALAD
1: Input: Simulation datasets D}™, ..., D™ and real dataset D.

2: Construct overall simulation dataset DS™ = [ J¥_ Dsim,

3: Split each dataset into signal region and sideband region using resonant feature m to get
{D%%,DFp Y} and {Dsr, Dsp}-
§(z,m)
1—g(x,m)’

simulation D% in the sideband region.

4: Learn weight w(z,m) = where ¢ is a classifier that distinguishes data Dgp from

5: Train a new classifier / on the signal region to distinguish between points in Dgr and points in
D%y reweighted by 0, using the following loss:

ﬁs(h,w)nis( > logh(z,m)+ > w(x,m)log(lh(x,m))>. (8)

z€Dskr zeDYm

6: Output: Classifier output i(z, m) for anomaly detection.

of n5% points. We train a classifier h to distinguish between the reweighted simulated data, which
approximates true background data, and the true data. In particular, the loss function used is

ﬁg(h,w):—n}%( > logh(z,m)+ Y u?(x,m)log(l—h(x,m))). 7)

»€Dsn vy

In expectation with an optimal w, we can see that minimizing this loss is equivalent to minimizing
the cross-entropy loss on a task that distinguishes between points drawn from p and points drawn
from p(-|y = 0) in the signal region. Therefore,  can be used for anomaly detection. The procedure
is summarized in Algorithm 2]

D Theoretical Results

We first present our generalization error bound on MULTI-CWOLA.

We define the following terms. Define the Rademacher complexity of F as R, (£ o F) =
E [supfe}- LS €il(f(x;), y;)] with Rademacher random variables Pr(e = 1) = Pr(e = —1) =
1. Define ey, as the minimum eigenvalue of the covariance matrix on [y, M; (), ..., My(z)], and
let @iy be the minimum value of E[M;(x)y| over all i.

Theorem 1. Assume that p(y, M(x)) can be parametrized according to (I) and that { is scaled
to be bounded in [0,1]. Assume that the class balance p(y) is known (if not, there are ways to
estimate it [20]), and that k > 3. Then, with probability at least 1 — 6, the generalization error of
MULTI-CWOLA on D is at most

Lol) = Lo(f?) < 4500 7) 2520 + S (/21 2F)
+ Dk (p(ylz)|[p(y[M(m))),

where c1, co are positive constants.
‘We observe that there are four quantities controlling the above bound:

* The Rademacher complexity of F: this term describes the model’s expressivity. Smaller

Rademacher complexity means that the model is easier to learn and that our f will be closer
to the best model in F. This quantity can be readily computed for a variety of function
classes JF, such as decision trees, linear models, and two-layer feedforward networks, which
makes our bound in Theorem [T] tractable.

» Using 7 finite samples: as the amount of data increases, the error decreases in O(n~1/2).

11



* Using noisy labels gy instead of y: for our weak supervision algorithm and graphical model,
using ¢ rather than y contributes an additional O(n~'/?) error. Asymptotically, our approach
thus does no worse than training with labeled data.

* The irreducible gap between p(y|m) and p(y|M(m)): we lose information about m by only
modeling mixture membership M(m).

Proof. From Theorem 3 of [10], we have that Lo (f) — Le(f*) is bounded by the traditional ERM
generalization gap of Lo (f) — Lo (f*), where f = argmin » LS O(f (2), ;) is the classifier

(/5 + 95) + Dice(plyl) [Ip(uM(m)).

We can apply standard learning theory bounds on Lc(f) — Lo (f*). In particular, this quantity is
equal to

learned on labeled data, plus the terms

Cmin Gy,

Lo(f) = Le(f) = (Le(f) = Le(N) + (Lo (f) = Le(f)) + (Le(f*) = Lo(f))
< Le(f) = Le(f) + Le(f*) = Le(f*)

< 2sup |La(f) — ﬁC( Dl
feF

where we have used the fact that L (f) < Lo (f*). Then, using uniform convergence bounds, such
as Theorem 3.3 of [[17], we have

Lo(f) = Le(f*) <2(2Ra(fo F) + \/@).

This gives us our desired result.

Next, we present our theoretical result on MULTI-SALAD.

We first set up some definitions. Let §(z) € [Gmin; max] and ¢*(2) € [951n, Iimax). Where g* is
the optimal classifier. Let R,,sr ({5 o {H, G}) be the Rademacher complexity of the overall loss
Ls(h,w) across function classes h € H, g € G. Define W = max,, ,,, w(x, m) as the maximum ratio
between the simulation and true background. Let B; = max{— log h*(z, m), — log(1 — h*(x, m))}
be based on the most extreme value of h* (i.e. how far apart p and p(-|ly = 0) can be). Let
n = max(—log(1 — h*(x,m))) for z,m € DIW. Let R, 55 (£ oG) is the Rademacher complexity of
the loss function class used for learmng the rewelghting, where ¢ is point-wise cross-entropy. Finally,
let Bo = — log(min{gmin, 9in })-

Theorem 2. With probability at least 1 — 6, there exists a constant ¢ > 0 such that the generalization
error of MULTI-SALAD on D*™ and D is at most

. [log 8/6
Ls(hﬂf)) — Ls(h*,’w) < 2mnSR(€S o {IH, g}) + (1 + WB1) ;iiSI/% ©)]
ik

+

log4/é log8/6
OR (4Cg{n53(fog)+20 91,58 + By 9 SR .

sim

(1 = Gmax) (1 — giax)

‘We make several observations about this bound:
* The bound scales in (n52)~1/2 and (n3%)~1/2, where the former comes from the initial
reweighting step while the latter comes from the weighted classification step.

» The bound is also dependent on the Rademacher complexities of both classifiers g and h
used.

* The bound depends on the difference between the simulation and data distributions through
quantities W, By, B2, 1, Jmax, 9max- If the distributions have very different densities, these
quantities will all be large, increasing the generalization error.

12



Proof. We define the true (cross-entropy) loss as

Ls(h,w) = —Pr(z' = D)E.i— [log h(z, m)] — Pr(z' = 0)E, ,,epsr [w(z,m)log(1l — h(z,m))]

g(z,m|z=1)

where 2* = 1 for z,m ~ P and 0 for z,m ~ P(|y = 0). Next, define w(x, m) = F=Tr=5

and let w be the weight ratio learned by our model. Let h = argming, ¢4 ﬁs(h,uﬁ), and let

h* = argminy,c,, L(h,w*). Intuitively, h* corresponds to the true difference between P52 and
PLE (-|y = 0). We can first decompose the generalization error as
Ls(hy) = Ls(h*,w) = [L(hy ) = L (h )] + [Ls (b, ) = Ls(h*, )] (10)

+ [Ls(h*, ) — Lg(h*,w)] + [Ls(h*,w) — Lg(h*, w)] (11)

We know that Lg(h,w) < Lg(h*, ), so
Lg(h,w) — Ls(h*,w) < |Lg(h,w) — Lg(h, )| + |Lg(h*,w) — Lg(h*,w)]
+ Lg(h*, ) — Lg(h*,w)
< sup |Ls(h,w) — Ls(h,w)| +|Ls(h*,w) — Ls(h*,w)| + Ls(h*, ) — Ls(h*,w)

h,w

We first bound supy, ,, | Ls(h,w) — Lg(h,w)|. For notation, we rewrite Lg(h,w) as Lg(h, g),

a(@.m)
T—g(z,m)

where w(z, m) = and g belongs to some function class G. Then, using Theorem 3.3

from [17]], we get that supy, ., |Ls(h,w) — Lg(h,w)| < 2R,sr(ls o {H,G}) + 1/ 2EL9 with
g h,w 2n

probability at least 1 — 0, where {g o {H,G} is defined as satisfying s (h(z,m), g(x,m),y) =
—ylogh(z,m) — (1 —y) 15(;(7;?731) log(1 — h(z,m)) forh € H,g € G.

Next, we bound |Lg(h*, w) — Lg(h*,w)|. Let W = max w(x, m) < oo be the maximum density
ratio, and let B; = max, ,,,{— log h*(z,m), —log(1 — h*(x,m))}. Assume that B; < co. We can

apply standard concentration inequalities here (Hoeffding) to get that | Lg(h*,w) — Lg(h*,w)| <
W B14/ lgi 23 with probability at least 1 — 6.

Finally, we bound Lg(h*, @) — Lg(h*,w). We can write Lg(h*,w) — Lg(h*,w) as
) o 1 ) *
Lg(h*,w) — Ls(h*,w) = SR Z (w(z,m) —w(x,m)) - (—=log(l —h*(z,m))) (12)

sim
z€DYR

Define 7 = max(—log(1 — h*(x,m))) > 0 for z, m € DR, which is small as long as h*(x, m)
sufficiently classifies « and is hence a property of how separated the reweighted simulation and true
data is. Then,

T ~ T * n ~
|Ls(h*, ) — Ls(h*,w)| < SR Z | (2, m) —w(x,m)| (13)
xz,meDER
Recall that w(z, m) = 1%;2;”731) and w(x,m) = % where g*(z,m) = Pr(z = 1|z, m), so
|W(z,m) —w(z,m)| = (17‘2823)_(“1’7(;;8‘7”)). This denominator is greater than (1 — Guax)(1 —

Ymax)- Then,

Ls(n ) = Ls(hw)| < g —osr 2 loem) —g"@m)l - (4

z,meDID
We now look at the classifier for training g. The per-point cross entropy loss for (x,m, 2)

is £(g(xz,m),z) = —logg(xz,m) for z = 1 and —log(l — g(x,m)) for = = 0. WLOG,
assume for some x and m, ¢g*(z,m) > g(z,m). Then |{(g*(x,m),1) — £(g(z,m),1)] =

13



o m) _ o @m) _ g @m)/a(m)=1 _ g*@m)=a(m) < | x(p ) _
log G = log (14 (G — 1)) > lrmiemst — Sl > (g (z,m)

gl m)| and [£(g*(z,m), 0) = £(3(w,m),0)] = log =5 — 1og (1+ (=422 —1)) =

(1(13(5300(;7733)/)(/1(199(123)73)) 1 (fi’_”;)(;%:;’m) > |g*(x, m) — g(x,m)|, where we use the inequality

log(1 +z) > f for x > —1. Therefore, with probability 1 — 4,

|Ls(h*, ) — Lg(h*,w)| < = )(1 o7 JnSE PG — U(g*(z,m), 2)|
ax max ©,meSR
SR
NMMgim N « ]0g2 )
< (1 — Gmax)(1 — gx*nax)nSR (E [Iﬁ(g(m,m), z) — (g*(z,m), Z)H + Bs QnS.I/% )

where By = max, ,{{(g(x,m), 2), {(g*(x,m), 2)} = —log(min{gmin, g}, }).- We assume that
Bs is finite, so there exists a constant ¢ such that

SR
2 * A 7 * Mgim ~ * 10g2 d
s (7, 2) = Ls (0 w)) < (=5 50— g iR <C'L(9) ~ U+ By )

sim

where L(g) = Ey mesr [¢(g(z,m), z)]. Since g*(x,m) is Bayes optimal, |L(§) — L(g*)| =
L(9) = L(g*) = L(9) — L(9) + L(9) — L(g*) + L(g") = L(g") < 2supyeg |L(g) — L(g)|- From
Theorem 3.3 in [[17], this is bounded by 2,55 (¢ 0 G) + 1/ & L% with probability at least 1 — 4.

o2nSB

Then, applying a union bound, with probability 1 — 4§, we have

|Ls(h", @) — Ls(h*, w)|

3k 4R 0 (00G 10g2/5 log4/5>
n

< p

Putting everything together with another union bound, with probability 1 — §, the generalization error
is at most

. . log 8/6
Lis(h, 1) — Ls(h*, ) < 250 (Es o {1, G}) + (1 + WBm/f—SQ (15)
SR
e log 4/6 log 8/6
= ) (1 — G (40% wltes 2058 2\ 20 ;iii 1o
O

E Experiment Details

E.1 MuLTI-CWOLA Experiments

For the MULTI-CWOLA experiment, we used the anomaly and simulation data from the Pythia
8 simulations in the LHC Olympics Dataset to create an unlabeled dataset we want to perform
anomaly detection on [13]]. We have k¥ = 3, and construct M;(m) based on the thresholds
[[3.3,3.7],[0.09,0.13],[0.3,0.35]]. In standard CWOLA, only the first feature is regarded as the
resonant feature, and it is thresholded with the interval [3.3,3.7]. We measure the AUC of the
MULTI-CWOLA versus CWOLA classifier and baselines in Figure [T] (Left). We constructed training
datasets of varying sizes from n = 59 to 6003. We used one test dataset with 65755 randomly
sampled anomaly points and 161658 randomly sampled background points.

All methods were trained using scikit-learn’s MLPClassifier with max_iter=5000.  For
MULTI-CWOLA’s weak supervision step, we learn the parameters of the graphical model using SGD
and PyTorch [L8]] with class balance Pr(y = 1) = 0.25, 30000 epochs, and learning rate = le — 6.

14
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Figure 2: Synthetic data for evaluating MULTI-SALAD.

E.2 MULTI-SALAD Experiments

Setup For the synthetic, the true background is P(-ly = 0) = $N(—1,0.2) + £N(1,0.2), and
the anomaly is P(-ly = 1) = 2N(-2,0.2) + 1M/(2,0.2). Simulation 1is P}, = 1N(1,0.2) +
2N(0,1), and simulation 2 is P2 = $N(—1,0.2) + 2N(0,1). We generate 2000 points from
the true background and 100 points that are anomalies to form D, and 2000 points each from PL
and P2 to form D§™ and D§™. We construct signal and sideband regions from these by splitting
datasets in half randomly, assuming they follow the same distribution over x (i.e., m is independent

of ) except that there is no anomaly in the sideband regions.

We use MLPs from Keras [3], each with 3 hidden layers of dimension 32, ReLU activation, and
trained with cross-entropy loss and the Adam optimizer. We train for 50 epochs, batch size 200, and
default parameters otherwise. Finally, we evaluate our approach on a new test set containing 200000
background points and 200000 anomaly points. This test set is used to produce the signal efficiency
to rejection rate. All experiments were run on a personal laptop.

Additional Results In Figure 2] we plot the synthetic example we evaluate on. In Figure[3] we
look at the reweighting applied to the sideband region, and in Figure 4] we compare our reweighting
on simulation data to the true p(-|y = 0) in the signal region. In Figure we show our results on
three individual runs. This is because computing the confidence intervals of these curves averaged
across the 10 random runs is too noisy due to the magnitude of the reciprocal 1/FPR.
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Figure 3: Top left: SALAD reweighting using simulation 1 on sideband region. Top right: reweight-
ing using simulation 2. Bottom: reweighting using simulation 1 and 2 combined.

2001 [ Data (with anomaly) 200{ [— Data (with anomaly)
Sim 1 (SALAD) Sim 2 (SALAD)
1501 150
(%] %]
5 5
S 1004 3 100
501 50
0 y " " 0 . : :
-1 0 1 -1 0 1
x (SR) x (SR)
300 [ Data (with anomaly) 2001 1 Data (with anomaly)
Sim [1, 2] (SALAD-switch) Sim [1, 2] (Multi-SALAD)
2 2001 9 150+
c £
3 5100
1001
50
0 ; T " 0 . , .
-1 0 1 -1 0 1
X (SR) X (SR)

Figure 4: Top left: SALAD reweighting using simulation 1 on signal region. Top right: reweighting
using simulation 2. Bottom left: using both simulation 1 and 2 weights separately. Bottom right:
reweighting using simulation 1 and 2 combined.
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Figure 5: Results on individual runs.
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