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Abstract

In recent years, there has been growing interest in using machine-learning algo-
rithms to assist classical numerical methods for scientific computations, as this
data-driven approach could reduce computational cost. While faster execution is
attractive, accuracy should be preserved. Perhaps more importantly, our ability to
identify when a given machine-learning surrogate is not reliable should make their
application more robust. We aim to quantify the uncertainty of predictions through
the application of Bayesian and ensemble methods. We apply these methods to
approximate a paraboloid and then the solution to the wave equation with both
standard neural networks and physics-informed neural networks. We demonstrate
that the embedding of physics information in neural networks reduces the model un-
certainty while improving the accuracy. Between the two uncertainty quantification
methods, our results show that the Bayesian neural networks render overconfident
results while model outputs from a well-constructed ensemble are appropriately
conservative.
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logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

1 Introduction

Scientific computing has benefited from decades of progress in numerical algorithms and advances in
hardware performance [1]. This evolution enters a new chapter as large-scale scientific computing
applications face many challenges related to the slowdown of Moore’s law [8], the pursuit of extreme
parallelism [6], and the quest for higher energy efficiency [5]. Assuming the use of existing computing
technology, high-performance computers of prohibitive specifications would be required to meet
society’s requirements for more accurate and reliable computational models. While the development
of new computing devices will address some of these challenges [12], a step change in numerical
algorithms may be necessary. Inspired by rapid progress in applying deep learning for cognitive tasks
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[7], there is increasing hope and expectation that neural networks (NN) can be leveraged to improve
the speed, accuracy, and/or energy efficiency of scientific computations. This endeavor is a subset of
the broader AI for Science (or Scientific Machine Learning) discipline [11].

NN-based surrogate models, whereby (part of) a physics-based simulation is replaced by a neural
network prediction, are attractive because their time-to-solution can sometimes be orders of magnitude
lower than physics-based algorithms [4]. NN-based surrogate models also tend to be more flexible
and to handle nonlinear transformations better than more traditional model-reduction techniques,
such as the proper orthogonal decomposition method [9]. Not surprisingly, neural networks are
especially effective at predicting solutions in problem configurations for which the neural network
was trained (i.e., neural networks interpolate well) [2]. Issues arise, and mitigation strategies need
to be implemented, when neural networks are used to make predictions based on input data that lie
outside of the range of the dataset used for optimizing the network parameters (i.e., neural networks
extrapolate poorly). One mitigation strategy consists in retraining the network on the fly when
the network’s predictions become unreliable, which calls for developing methods to quantify the
uncertainty around these predictions. If successful, such uncertainty-quantification methods would
enable the automation of complex workflows that combine physics-based models and neural-network
surrogates used for acceleration.

We focus on two techniques to quantify the model uncertainties: Bayesian neural networks and
ensembles. Bayesian neural networks (BNNs) differ from their classical counterparts by training
probability distributions for the network parameters instead of deterministic values [13]. Given a
unique input, BNN inferences (predictions) will vary. The spread among these predictions indicates
the model’s uncertainty around the mean, which is typically driven by insufficient data. Ensemble
methods consist in training different networks on the same data and in using the spread across these
networks’ predictions to assess the uncertainty around the mean prediction. A simple steady-state
two-dimensional problem is first considered as a way to clearly expose the methodology. We then turn
to the wave equation. We seek to quantify the uncertainty of predictions obtained from standard neural
networks and from physics-informed neural networks (PINNs)[10], using Bayesian and ensemble
methods.

2 Steady-state two-dimensional problem

We consider the two-dimensional paraboloid f = x2 + y2 defined for (x, y) ∈ Ω = [−2, 2]× [−2, 2].
We further consider a split of this domain into an interpolation region Ωi = [−1, 1] × [−1, 1] and
an extrapolation region Ωe in the remainder of the domain, that is, Ωe = Ω \ Ωi. Labeled data is
only generated in Ωi where 2500 points are randomly sampled in space. We seek to investigate the
performance of several neural-network methodologies in the extrapolation region, with a focus on
each methodology’s ability in quantifying the uncertainty. When training physics-informed neural
networks, an additional 7500 (x, y) locations are randomly selected in Ωe to compute the physics-
based regularization term that arises in the loss function. In the case of the paraboloid, we choose
a penalization term of the form V(f̂xx) + V(f̂xy) + V(f̂yy), where V is the variance and f̂ is the
network’s prediction. This penalization term consists in weakly enforcing the second derivatives of
the NN’s prediction f̂ with respect to the input (x, y) to be zero. We expect, as will be shown, the
PINN to outperform the standard NN in the extrapolation region. To assess the uncertainty in Ωe,
we construct Bayesian versions of these two networks, respectively called BNN and BPINN. We
also consider ensembles of these neural networks: an ensemble of (standard) NNs and an ensemble
of PINNs. These four approaches are summarized in Table 1, where they are contrasted by their
architecture and training procedure. Notably, training physics-informed neural networks takes longer
because the learning rate is smaller, but also because more data is used (labeled data and physical
locations where penalization is enforced). A smaller learning rate is required to accommodate the
added complexity incurred by adding the physics-informed regularization term. Networks in the
ensembles differ by their architecture, namely the number of hidden layers and their width, while the
training procedure is the same for all ensemble members.

We estimate the uncertainty around predictions by performing 30 inferences in the Bayesian approach
and by constructing 30-member ensembles (and so, performing 30 inferences). We experimentally
observed that the standard deviation of predictions exhibited very little change beyond 30 inferences
in both the Bayesian and the ensemble approaches. Figure 1 summarizes the results obtained by
performing these 30 inferences to approximate the paraboloid on Ω. We note the outperformance of
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Table 1: Architecture and training parameters of the neural networks considered for the paraboloid.
Training is based on the Adam optimizer. Each member is created by randomly selecting a depth
between 3 and 5, and then randomly selecting a width that is fixed for all hidden layers.

Method Architecture Training
BNN depth=3, width=5 500 epochs, 0.01
BPINN depth=3, width=5 15,000 epochs, lr = 0.001
NN Ensemble depth ∈ [3, 5], width ∈ [10, 20] 500 epochs, lr = 0.01
PINN Ensemble depth ∈ [3, 5], width ∈ [10, 20] 5000 epochs, lr = 0.001

physics-informed networks in the extrapolation region, where they have much lower errors compared
with their standard counterparts. The PINN ensemble, however, performs relatively worse than the
Bayesian PINN, which may be due to the inclusion of poorly-performing networks in the ensemble
compared to a single BPINN that is trained until it reaches the desired loss. An additional step could
consist in removing these anomalous networks from the ensemble. However, the ensemble diversity
also translates to a higher standard deviation (row 3), and more importantly, to a more conservative
error-to-standard deviation ratio (see row 4). The ensemble’s standard deviation is a more reliable
indicator of the error than the Bayesian PINN’s standard deviation. The same observation is made
when comparing the Bayesian NN and the NN ensemble, with the latter being more conservative in
its assessment of the model uncertainty (the Bayesian approach’s standard deviation underestimates
the error). Of particular note is the NN ensemble’s capacity in predicting the area of the domain
where the model prediction is reliable, namely within Ωi, where standard deviation is close to zero.
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Figure 1: For each neural-network approach (represented by columns), row 1 represents the prediction
f̂ as obtained from the mean of all 30 inferences, row 2 represents the error against the true function
(f = x2 + y2), row 3 represents the standard deviation σ from the mean across the 30 inferences,
and row 4 represents the ratio of the error to standard deviation (row 2 divided by row 3).

3



3 Wave equation

The wave equation is at the core of many scientific applications, such as earthquake modeling,
acoustics, hydrocarbon exploration, and stealth aircraft design. While effective, traditional numerical
methods (e.g., finite elements) remain expensive and neural-network-based approximations could
be attractive. Here, we develop physics-informed neural networks for the two-dimensional wave
equation, as described by [3], and assess the uncertainty in the extrapolation region using Bayesian
and ensemble approaches. Training data is gathered from the numerical simulator in the interpolation
region (t ≤ 1) and we define the extrapolation region by t > 1. The data-sampling and training
strategy follows [3]. In all cases, we use five hidden layers of width 100 and train for 15,000 epochs
with a learning rate of 0.001 (Adam optimizer). Given the difficulty in training PINNs for the wave
equation, we were able to successfully train only 10 networks. Training procedures only differed by
the random initialization of the network parameters, whereas member architectures were identical.
In Figure 2, we compare the BPINN and PINN ensemble approaches in their ability to quantify
the model uncertainty and assess whether the uncertainty is a reliable indicator of the actual error.
The ground truth is obtained by running a numerical simulation of the wave equation based on a
high-order discontinuous-Galerkin method. We start by contrasting, at different times, the predictions
from a PINN and from a BPINN (one inference at each time) to illustrate the noisy nature of the
BPINN’s prediction (the mean of all 30 predictions is much smoother). The last two rows of Figure
2 show the error-to-standard deviation ratios at the same times, as an attempt to determine whether
each approach is either conservative or overconfident in their error estimation. We note that, contrary
to the paraboloid problem, the ensemble method is overconfident, which likely stems from the lack
of significant-enough variation across members of the ensemble. The overconfidence is particularly
notable in the interpolation region or slightly beyond (t ≤ 1.25), which could be caused by overfitting.
This result highlights the importance of constructing an appropriate ensemble, that is, an ensemble
featuring enough architectural variation across members.

4 Summary

We explored two strategies to quantify the uncertainty of NN-based surrogates of physics problems,
namely a Bayesian approach and an ensemble approach. Between the two uncertainty-quantification
methods, our results show that the Bayesian neural networks render overconfident results while
model outputs from a well-constructed ensemble are appropriately conservative. To be usable in
scientific applications, these methods must be equipped with a mechanism to interpret, and act on, the
uncertainty estimate. This effort is ongoing and we encourage the scientific computing community to
move in that direction.

5 Broader impact

Machine-learning-based surrogate models are increasingly considered to accelerate parts of scientific
simulations. We recognize that these ML algorithms can significantly speed up simulations and also
make them more energy-efficient. We also stress that these approximations should not hamper the
overall simulation accuracy more than is acceptable. This requirement drives the need for embedding
efficient uncertainty-quantification methods while deploying those surrogate models. By failing to do
so, we run the risk of limited adoption by a community that is used to relying on rigorous a priori
and a posteriori error-estimation techniques. In addition, any uncertainty-quantification technique
should be evaluated not only based on its capacity to deliver an appropriate metric, but also on how
efficiently it can run on current and future computing resources. While Bayesian methods seem
to be less able to provide conservative error estimates, we note that they are more efficient from
a computational and data-storage perspective (only one model needs to be trained). This complex
landscape warrants more research.
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Figure 2: Uncertainty quantification for the wave equation as predicted by a Bayesian PINN (30
inferences) and a 10-member PINN ensemble. Row 1 represents the prediction from a deterministic
PINN [3] at different times (labeled data only available for t ≤ 1). Row 2 shows the BPINN
predictions at the same times. Only one inference is computed at each time instead of 30 to
illustrate the noisy result and the network’s capacity to capture the uncertainty (the mean would
be smoother). Row 3 and 4 show the error-to-standard deviation ratios for the BPINN and PINN
ensemble approaches, respectively.
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