
Using Shadows to Learn Ground State Properties of
Quantum Hamiltonians

Viet T. Tran 1 Laura Lewis 2 Hsin-Yuan Huang 2

Johannes Kofler 1 Richard Kueng 3 Sepp Hochreiter 1,4 Sebastian Lehner 1,4

1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning,
Johannes Kepler University, Linz, Austria

2 Institute for Quantum Information and Matter,
Department of Computing and Mathematical Sciences,

Caltech, Pasadena, CA, USA
3 Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria

4 Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria

Abstract

Predicting properties of the ground state of a given quantum Hamiltonian is an im-
portant task central to various fields of science. Recent theoretical results show that
for this task learning algorithms enjoy an advantage over non-learning algorithms
for a wide range of important Hamiltonians. This work investigates whether the
graph structure of these Hamiltonians can be leveraged for the design of sample
efficient machine learning models. We demonstrate that corresponding Graph
Neural Networks do indeed exhibit superior sample efficiency. Our results provide
guidance in the design of machine learning models that learn on experimental data
from near-term quantum devices.

The computational investigation of quantum many-body systems is a key challenge in numerous
areas of chemistry, material science, as well as of condensed-matter and high-energy physics.
The underlying problem is that a complete description of such quantum systems requires in
general exponentially many classical parameters. For instance, representing an arbitrary state of
a couple of dozen binary quantum degrees of freedom (qubits) would exceed by far the memory
capacity of presently available supercomputers [1]. Quantum computers, in contrast, do not
require this quantum-to-classical conversion of information and, therefore, do not face this curse of
dimensionality. However, fault-tolerant scalable quantum computers are presently out of experimental
reach. Consequently, the exploration of new approaches towards an efficient representation of
quantum many-body systems on classical computers is a highly active field of research.
Interestingly, it can be shown that numerous practically relevant properties of arbitrary quantum
states can be captured already with informationally incomplete measurements, so called shadows
[2; 3; 4]. The information to construct these shadow representations may result either from simulated
or experimental measurements. Rigorous theoretical analysis shows that the number of state copies
and measurements necessary to obtain classical shadow representations of a certain quality depends
only logarithmically on the number of qubits n and may thus be feasible for many problems of
interest [3]. Thus, classical shadows are an attractive representation of quantum states to address
quantum many-body problems on classical computers.
Machine Learning (ML) proved to be a highly powerful tool-set when approaching tasks related to
high dimensional data sets including a growing number of applications in the context of quantum
physics [5]. The advantage of ML algorithms that are trained with classical shadow data over
algorithms that do not learn from data is rigorously established for several practically relevant

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

classification and regression tasks in the context of quantum many-body systems [4]. While this
result formally motivates the application of ML, it does not specify which particular ML method one
should select for a given task. A relevant consideration in this context is that obtaining classical
shadow data from simulations or from experiments is typically expensive and, therefore, the sample
efficiency of ML algorithms is of crucial importance.
An example for a task with proven ML superiority is to predict correlations of the ground state
of a certain family of quantum Hamiltonians that are defined on lattices (see Sec. 1). The graph
structure inherent to this task motivates the application of Graph Neural Networks (GNNs). This
type of neural network architecture is a natural choice to represent systems that are governed
by pairwise interactions of components [6]. Consequently, it is not surprising that GNNs are a
highly popular choice in the context of physics-related ML applications, e.g., classical mechan-
ics [7; 8], high-energy physics [9], quantum chemistry [10], and quantum many-body physics [11; 12].

1 Problem Setting

The task considered in this work is to estimate properties of an unknown quantum many-body state
which is represented by a density matrix ρ. This prediction is based on a description of a Hamiltonian
for which ρ is a ground state.
The ground truth, i.e. the properties of ρ, can be efficiently estimated in a real-world experiment by
the shadow measurement protocol proposed in [3]. In this protocol, a set of T copies of states is
prepared and a single-qubit measurement is performed with one of the three Pauli operators X,Y or
Z. The measurement basis is selected randomly for each qubit in each of the T copies of the state ρ.
The selected Pauli measurements basis for each qubit along with the corresponding outcomes allow
the construction of an approximation of ρ, called the classical shadow, based on which important
properties of ρ can be computationally estimated in an efficient way.
In the concrete problem setting considered here, ρ is the ground state of an n-qubit 2D antiferromag-
netic Heisenberg Hamiltonian. In this system, the qubits are located on a 2D lattice and adjacent qubits
are coupled via an interaction term ∝ JijCij with uniformly sampled couplings Jij from the interval
[0, 2] (see Fig. 1, left). The two-point correlator is defined via Cij =

1
3 (XiXj +YiYj +ZiZj), where

the indices of the single qubit Pauli operators specify on which qubit the operator acts non-trivially.
The ML task is to predict the expectation values of the two-point correlators cij(ρ) = Tr[Cijρ] ∈
[− 1, 1] based on the corresponding couplings Jij (see Fig. 1, middle). These couplings can be
regarded as an implicit representation of ρ that does not allow an efficient, i.e. polynomial-time,
calculation of the target variables cij(ρ).
For this problem, [4] show that algorithms which learn from the outcomes of aforementioned shadow
measurements are provably superior with respect to non-learning algorithms under standard as-
sumptions in complexity theory. In particular, they show that the amount of training data required
to train a model of a certain quality in terms of the mean squared prediction error scales at most
polynomially with the system size n. However, these theoretical guarantees on the sample efficiency
of learning are not expected to be tight and thus the performance of different ML methods remains to
be investigated experimentally and theoretically. A practically highly relevant question in this context
is whether models with suitable inductive biases can achieve an increased sample efficiency on these
learning problems. To investigate this question, we generate a suitable data set. First, we compute the
quasi-exact ground state with Density Matrix Renormalization Group (DMRG) [13] using the library
ITensor [14]. Based on this approximation, we simulate the outcome of T = 103 randomly selected
Pauli measurements and use them to construct the classical shadow representation of the ground state
for each Hamiltonian according to [4]. With these classical shadows of ρ, we compute estimations of
cij(ρ). Using the Jij of a Hamiltonian as input, the ML models are trained to predict cij(ρ). For this
purpose, we use the mean squared error (MSE) loss:

ℓ =
1

n2

∑
i,j

(
ĉij(ρ)− cij(ρ)

)2
, (1)

where ĉij(ρ) is the model prediction (see A.3 for details). The evaluation of the trained models is
carried out on a hold-out set of Hamiltonians whose couplings are randomly sampled in the same
manner as for the training set. However, in the evaluation we directly use the DMRG ground state
to compute the cij(ρ) and compare them to the models output. In a real-world application, on a

2

system that is too large for classical computational methods like DMRG one would train a model
using as training labels real measurement data from an experimental realization of ρ. By using the
T = 103 simulated measurements, we mimic the label noise that would result from the same number
of measurements in a real experiment.

0
.6

4
1

1.937

1
.7

1
8

1.060

0
.1

5
5

1.174

0
.8

0
6

1.261

1
.5

2
2

1
.3

0
2

0.463

1
.1

1
5

0.664

1
.5

3
8

0.416

1
.9

6
3

0.992

0
.2

7
4

0
.5

6
1

0.009

1
.2

9
6

0.377

0
.7

5
9

0.430

1
.8

5
1

1.936

1
.8

9
7

1.878 0.591 1.005 1.257

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

0 2 4 6 8
1

0
1

2
1

4
1

6
1

8

Spin i

0
2
4
6
8

10
12
14
16
18

S
p

in
j

0 2 4 6

d

−1.0

−0.5

0.0

0.5

1.0

c d

−1.0

−0.5

0.0

0.5

1.0

Figure 1: Left: A 2D-Heisenberg Hamiltonian system with with n = 4× 5 spins is visualized on a
lattice with nodes representing different spins and with edges representing the couplings between
them. The nodes are enumerated row-wise and the edge thickness indicates the coupling strength.
Middle: The ground truth of the two-point correlation cij(ρ) resulting from DMRG for a randomly
generated Heisenberg Hamiltonian. Right: For every L1 distance d(i, j), the average coupling
cd = 1

nd

∑
i≤j δd(i,j),d cij(ρ) over all possible nd pairs with distance d is shown (δ is the Kronecker

delta). Error bars indicate the standard deviation over corresponding pairs (i, j).

2 Methods

In this work, we compare three classes of ML approaches: GNNs, Multilayer Perceptrons (MLPs),
and kernels.
The inputs to our learning problem can be naturally represented on a graph G = {V, E} with a set
of nodes V = {vi}, i ∈ {1, . . . , n} which represent the n qubits and with a set of weighted edges
E = {eij}, i, j ∈ {1, . . . , n} which represent the couplings Jij . GNNs allow to build ML models
that are by construction compatible with this graph structure in terms of permutation equi- and
invariance and adjacency. Our GNN architectures are based on the Full GN block introduced in [6],
but without global graph attributes. We compare two different variants of GNNs that are both built
from several message-passing layers but which differ in the output layers (see A.2.2). One variant
calculates the prediction ĉij directly from the corresponding edge embedding eij , i.e., ĉij(ρ) = eij .
Since we require a prediction of cij(ρ) for every pair i, j, this approach necessitates an edge between
every pair of nodes. We refer to it as fully-connected GNN (FC-GNN). In the second GNN variant,
edges are only present for nearest-neighbor nodes, and the prediction is based on the inner product of
the corresponding node-embeddings ĉij(ρ) = ⟨x′i, x′j⟩. We refer to this variant as the pairwise GNN
(PW-GNN). The MLP is a fully-connected neural network that takes the vectorized couplings Jij as
input and returns a prediction ĉij(ρ). Our kernel method is a reimplementation of the Neural-Tangent
Kernel (NTK) method used in [4]. Details on the hyperparameter optimization, architectures and
further details on the models are provided in App. A.2- A.4.

3 Experiments and Discussion

We experimentally compare various ML methods (see Sec. 2) in terms of sample efficiency in the
learning problem described in Sec. 1. For each run, we train on 10, 20, 40, 80, 160 and 320 training
samples which are independently and randomly chosen from the training data set with a total of 400
Hamiltonians. Trained models are then evaluated on a test data set of 100 Hamiltonians in terms of
the mean squared prediction error on the test data set MSEtest. In the following, error bars represent
standard deviations over 10 runs with independent seeds, unless otherwise stated.
Figure 2 (left) shows the MSEtest for various models and different numbers NH of training Hamiltoni-
ans of size n = 4× 5. In general, the GNN models perform best. For NH ≥ 20 the PW-GNN model
has the lowest MSEtest, and for NH = 10 the FC-GNN performs best. Next, we quantify the sample

3

10 20 40 80 160 320

NH

0.001

0.003

0.005

0.007

0.009
M

S
E

te
st

20 25 30 35

system size n

0.01

0.02

0.03

M
S

E
te

st
,

d
=

1

20 25 30 35

system size n

0.002

0.003

0.004

M
S

E
te

st
,

d
=

5

PW-GNN FC-GNN NTK2 NTK5 MLP fit

Figure 2: Left : num train vs test mse, 4x5 grid. Middle & Right : MSEtest for various system sizes n
with NH = 80 training Hamiltonians per system size at distance d = 1 (middle) and d = 5 (right).

efficiency of individual models. The dependence of the generalization error of ML models on the
number of training samples is typically described by a power-law [15], implying MSEtest = aN b

H.
In Figure 2 (left), power-law fits for each model are shown as dashed lines. The lower the value
of the exponent b, the more sample efficient is the model. In Tab. 1, we report b for our models
on various system sizes n (corresponding plots are shown in App. A.6). For each system size, the
PW-GNN model is the most sample efficient, followed by the MLP. Interestingly, the most sample
efficient model class PW-GNN is the only model class in these experiments that has the same graph
structure as the Hamiltonians. For a given model class, the results in Tab. 1 suggest that for larger
systems the sample efficiency is decreasing. When changing the system size n, several eventually
counteracting effects like an exponentially growing Hilbert space or the growing information content
per training sample impact the scaling behaviour of the sample efficiency. Disentangling these effects
theoretically and experimentally will be the goal of future work.

System size n: 4x5 5x5 6x5 7x5

PW-GNN -0.59 -0.57 -0.54 -0.55
FC-GNN -0.32 -0.31 -0.29 -0.29
MLP -0.47 -0.39 -0.36 -0.30
NTK2 -0.20 -0.18 -0.16 -0.14
NTK5 -0.25 -0.18 -0.14 -0.12

Table 1: Power-law exponents b of the fits of MSEtest for different system sizes n and models. The
smallest slopes are bold.

The scaling of the prediction quality with the system size is of practical interest. Since all couplings
in the spin system are antiferromagnetic, the mean values of cij(ρ) depend on the corresponding
distances d in an alternating manner (Fig 1, right). Therefore, we analyze the prediction quality in
dependence of d. We find that for d = 1, the MSEtest is almost independent of the system size n for
the GNN models and increases with n for the other models (Fig. 2, middle). For d = 5 all models
even appear to benefit from a larger n (Fig. 2, right). Qualitatively, we observe similar trends for
other training set sizes NH (App. A.7). These findings are compatible with the theoretical result of
[4] stating that the amount of training Hamiltonians NH required to achieve a certain MSE scales at
most linearly with the system size n.

4 Conclusion and Outlook

We evaluate various ML models on the task of predicting ground state properties given a description
of the associated Hamiltonian. GNNs with the same graph structure as the Hamiltonians are found
to perform best, in particular with respect to sample efficiency. While these results are limited to
one specific class of Hamiltonians, they motivate further theoretical and experimental investigations
of inductive biases of ML models in learning tasks related to graph structured Hamiltonians. The

4

empirically found system size dependence of the prediction quality can be regarded as encouraging
for the application of classical shadows along with ML in larger experimental setups on near-term
quantum devices.

5 Broader Impact

The development of sample efficient machine learning methods for learning tasks based on measure-
ment data of quantum experiments would significantly reduce the effort required to experimentally
study quantum many-body systems. Our results demonstrate that structural inductive biases can be
leveraged to approach this goal and motivate broader theoretical and experimental investigations.
Corresponding methods would be highly beneficial in fields involving quantum many-body systems
such as e.g. chemistry and material science.

Acknowledgments and Disclosure of Funding

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by the
Federal State Upper Austria. IARAI is supported by Here Technologies. We thank the projects AI-
MOTION (LIT-2018-6-YOU-212), AI-SNN (LIT-2018-6-YOU-214), DeepFlood (LIT-2019-8-YOU-
213), Medical Cognitive Computing Center (MC3), INCONTROL-RL (FFG-881064), PRIMAL
(FFG-873979), S3AI (FFG-872172), DL for GranularFlow (FFG-871302), AIRI FG 9-N (FWF-
36284, FWF-36235), ELISE (H2020-ICT-2019-3 ID: 951847). We thank Audi.JKU Deep Learning
Center, TGW LOGISTICS GROUP GMBH, Silicon Austria Labs (SAL), FILL Gesellschaft mbH,
Anyline GmbH, Google, ZF Friedrichshafen AG, Robert Bosch GmbH, UCB Biopharma SRL, Merck
Healthcare KGaA, Verbund AG, Software Competence Center Hagenberg GmbH, TÜV Austria,
Frauscher Sensonic and the NVIDIA Corporation.

References
[1] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak

Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum supremacy using
a programmable superconducting processor. Nature, 574(7779):505–510, 2019.

[2] Scott Aaronson. Shadow tomography of quantum states. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 325–338, 2018.

[3] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum
system from very few measurements. Nature Physics, 16(10):1050–1057, 2020.

[4] Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V. Albert, and John Preskill.
Provably efficient machine learning for quantum many-body problems. Science, 377(6613):
eabk3333, 2022. doi: 10.1126/science.abk3333. URL https://www.science.org/doi/
abs/10.1126/science.abk3333.

[5] Anna Dawid, Julian Arnold, Borja Requena, Alexander Gresch, Marcin Płodzień, Kaelan
Donatella, Kim Nicoli, Paolo Stornati, Rouven Koch, Miriam Büttner, et al. Modern applications
of machine learning in quantum sciences. arXiv preprint arXiv:2204.04198, 2022.

[6] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[7] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, pages 8459–8468. PMLR, 2020.

[8] Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and
Johannes Brandstetter. Boundary graph neural networks for 3d simulations. arXiv preprint
arXiv:2106.11299, 2021.

5

https://www.science.org/doi/abs/10.1126/science.abk3333
https://www.science.org/doi/abs/10.1126/science.abk3333

[9] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

[10] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature communications, 13(1):
1–11, 2022.

[11] Dmitrii Kochkov, Tobias Pfaff, Alvaro Sanchez-Gonzalez, Peter Battaglia, and Bryan K
Clark. Learning ground states of quantum hamiltonians with graph networks. arXiv preprint
arXiv:2110.06390, 2021.

[12] Li Yang, Wenjun Hu, and Li Li. Scalable variational monte carlo with graph neural ansatz.
arXiv preprint arXiv:2011.12453, 2020.

[13] Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev.
Lett., 69:2863–2866, Nov 1992. doi: 10.1103/PhysRevLett.69.2863. URL https://link.
aps.org/doi/10.1103/PhysRevLett.69.2863.

[14] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The ITensor software library
for tensor network calculations, 2020.

[15] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically. arXiv preprint arXiv:1712.00409, 2017.

[16] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[17] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks
in python. In International Conference on Learning Representations, 2020. URL https:
//github.com/google/neural-tangents.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We support our claims in Section 3.

(b) Did you describe the limitations of your work? [Yes] In the Section 4.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We did not yet
include code because this work is in progress. However, a public code repository is
under preparation.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specify all data splits and hyperparameters in A.3.

6

https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
https://github.com/google/neural-tangents
https://github.com/google/neural-tangents

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report the standard deviation of the MSEtest for 10
different seeds as can be seen in Fig. 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We state compute resources in A.5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] The original data set

is provided in [4] as mentioned in A.4
(b) Did you mention the license of the assets? [Yes] It is open source: https://github.

com/hsinyuan-huang/provable-ml-quantum
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

The additional data set will be published along with the public code repository which
is under preparation.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Appendix

A.1 Structure of Input Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28 29 30

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Figure 3: Enumeration order
of edges and nodes for a 4× 5
grid

For the GNN models, the 2D-Heisenberg systems were encoded
into a graph structure in which the nodes are represented as one-hot
vectors enumerated as shown in Fig. 3. For FC-GNNs, we connect all
nodes and include self-connections. We initialize the edge weights
with the corresponding couplings Jij . In the cases where the nodes
are not neighbors and thus actually do not directly interact in the
Heisenberg system, we initialize the corresponding edge weights to
0. For the PW-GNNs, we only connect neighboring nodes. The edge
weights are initialized with the corresponding couplings Jij and the
nodes are one-hot encoded as well. The MLP models and kernel
methods take as input the vectorized couplings Jij where the edges
are vectorized according to the enumeration in Fig. 3.

A.2 Model Architecture

A.2.1 MLP Model

Given an m × 5-grid Heisenberg Hamiltonian H with n = 5m
qubits with n2 two-point correlations with vectorized coupling x ∈ [0, 2]5(m−1)+4m the MLP model
first projects x into an h-dimensional representation.

Next, we stack multiple MLP layers, enumerated by l and keep the hidden dimensionality constant.
After the last MLP layer, we use a linear layer to project the hidden representation to the output size
of n2 and normalize it. We denote the result as z. Finally, we reshape z into a matrix Z ∈ Rn×n

and predict all two-point correlations cij(ρ) of the Hamiltonian H by constructing the following
symmetric matrix:

ĉij(ρ) = (ZZT)ij . (2)

7

https://github.com/hsinyuan-huang/provable-ml-quantum
https://github.com/hsinyuan-huang/provable-ml-quantum

Thus, the MLP model consists of l MLP layers and a final linear layer, followed by a instance-wise
normalization and symmetrization operation.

A.2.2 GNN Models

Given the same m × 5 grid Heisenberg Hamiltonian H , our input data now consists of graphs
G = (V, E) with nodes vi ∈ V, |V| = m and edges eij ∈ E , |E| = ne. We assign each node a
positional embedding by attaching a one-hot encoded vector as a dp dimensional node feature pvi .
Each edge is assigned a scalar edge feature aij ∈ [0, 2] storing the corresponding coupling Jij for
this edge.
Here dp denotes the dimension needed to encode all nodes as one-hot vectors and thus dp = n and ne
denotes the number of edges which differ for PW-GNN and FC-GNN:

ne =

{
(5m)2 for FC-GNN,
5(m− 1) + 4m for PW-GNN.

(3)

We use message passing neural networks (MPNN) [16; 6] as a specific type of graph neural networks
to operate on nodes and edges in the hidden dimension h. In an MPNN the edge embeddings gij at
edge eij and node embeddings hi at node vi are iteratively updated via

mij = ϕ(hi, hj , gij) (4)

g′ij = ω(gij ,mij) (5)

h′i = ψ
(
hi,□eij∈Emij

)
, (6)

where □eij∈E denotes the aggregation of messagesmij over all edges eij with a permutation invariant
operation such as mean, max or sum. We use summation by default. The functions ϕ, ψ and ω
are trainable and unique for each MPNN layer. In our case they are dMLP-layer MLPs with ReLU
activations and hidden dimension h.

Our GNN models consist of an initial MPNN layer MPNNproj which projects the input node embed-
dings {pvi} and edge embeddings {aij} into an h-dimensional hidden representation by ψ, ϕ and ω
via the equations (4)-(6):

{h(1)i }, {m(1)
ij } = MPNNproj ({pvi}, {aij}) . (7)

Thus, h(1)i ∈ Rh and m(1)
ij ∈ Rh. For a dMPNN-layer GNN model, we now apply dMPNN − 2 layers of

MPNNs with skip connections whose update procedure is defined as:

mij = ϕ(hi, hj , gij) (8)

g′ij = ω(gij ,mij) + gij (9)

h′i = ψ
(
hi,□eij∈Emij

)
+ hi. (10)

For this step, the old and new node and edge embeddings have the same dimension,
i.e. hi, gij , h′i, g

′
ij ,mij ∈ Rh. The final readout layers differ for the PW-GNN and FC-GNN.

In case of the FC-GNNs the final readout layer is an MPNN without skip connections, which projects
the node embeddings down to Rn and the edge embeddings down to a scalar value. Those scalar edge
embeddings {gij}ni,j=1 are reshaped into a matrix Z ∈ Rn×n and then multiplied with its transpose
to get a symmetric two-point correlation matrix. In order to confine the correlation predictions to
[−1,+1] we apply an element-wise tanh operation:

ĉij(ρ) = (tanh
(
ZZT

)
)ij . (11)

A possible alternative which we will test in the future would be similar to the MLP method where we
apply a normalization before symmetrization and leave out the tanh activation on the output.
For PW-GNNs the final readout layer is an MPNN-layer, however, with skip connections and thus
the final node embeddings {hi}ni=1 and edge embeddings {gij}ni,j=1 are still h-dimensional. We
normalize each h̃i = hi/∥hi∥2 and calculate the ĉij(ρ) of the Hamiltonian H as

ĉij(ρ) = ⟨h̃i, h̃j⟩. (12)

8

In both GNN-model types we have in total dMPNN MPNN layers where the first one is a projection
MPNN and the hidden MPNN layers operate on h-dimensional node and edge embeddings. The last
layer for FC-GNNs is a down projection MPNN so that we obtain a scalar edge embedding. Since for
PW-GNNs the correlation are estimated via a dot-product of node embeddings we do not apply a
down projection and proceed with a final MPNN operating in the h-dimensional embedding space.

A.2.3 Kernel Based Models

We reimplemented the neural tangent kernel of a 2-layer (NTK2) and 5-layer (NTK5) fully connected
network with ReLU activations and an instance normalization as the first layer similar to the architec-
ture proposed in [4] using the Neural Tangents library [17].
Let us denote the neural tangent kernel of an l-layer fully connected network as κ(xl, xm), with
xl, xm being the vectorized couplings of Hamiltonians Hl and Hm. Then, we calculate the instance-
wise normalized feature vector ϕl for the l-th sample as ϕ̃l = (κ(xl, x1), . . . , κ(xl, xNH)) and
ϕl = ϕ̃l/∥ϕ̃l∥2. We can now write the full feature matrix of all training samples as Φ ∈ RNH×NH

where each row l corresponds to the feature vector of Hl. Given those feature vectors, we train two
types of linear regression models with different hyperparameters using scikit-learn [18].
The linear kernel ridge regression for the two-point correlation cij(ρ) then solves the following
problem individually for each ij-pair of nodes:

min
w

||Φw − cij(ρ)||22 + α||w||22 (13)

Here, w are a trainable model parameters and α are different regularization strengths which are found
via a hyperparameter search (see App. A.4). The linear support vector regression solves the following
optimization problem for each ij-pair of nodes, where cij(ρl) denotes the correlations for the ground
state ρl corresponding to the Hamiltonian Hl:

min
w,b

1

2
wTw +K

NH∑
l=1

max(0, |cij(ρl)− (wTΦl + b)| − ε) (14)

Here, w and b denote trainable model parameters, Φl is the l-th column of the full feature matrix Φ
and K is a regularization parameter determined by a hyperparameter search (see App. A.4) and as in
the original work [4] we set ε = 0.1.

A.3 Training and Validation

For the experiments shown in Sec. 3, we use a fixed train/validation/test data set split of 400/100/100
for all experiments. The splits are randomly generated once before all experiments. The actually
utilized training data sets of size NH ∈ {10, 20, 40, 80, 160, 320} is randomly sampled from the total
400 training Hamiltonians. Each error bar displayed in Fig. 2 is calculated as the standard deviation
over 10 different seeds {si = 7k|k = 0, . . . , 9} which affect the model initialization weights and the
composition of the training data set. For each data set size NH, the same 10 seeds are used so that for
the same seed the smaller training data sets are subsets of the larger training data sets. More formally,
let Ttrain(si, NH) denote the training data set for seed si with NH samples. Then, for any fixed si,
we have Ttrain(si, 10) ⊂ Ttrain(si, 20) ⊂ · · · ⊂ Ttrain(si, 320). In total we have 600 Hamiltonians for
each grid size {4, 5, 6, 7}× 5 with identical splitting compositions for each of the 10 seeds.

The validation data set is used to evaluate the models after every epoch to apply early stopping and a
learning rate schedule. This is only valid for the MLP and GNN models since the kernel methods
use another form of training which will be explained in section A.3.1. More specifically, after each
training epoch we compare the validation MSE with the validation MSE of the previous epoch and
stop the training if the MSE did not decrease for 100 epochs. Furthermore, we decrease the learning
rate by a factor of 0.9 if the validation MSE did not decrease for 25 epochs. If nothing else is stated,
the initial learning rate is 10−3 and the default batch size is 10.

A.3.1 Training and Validation Details of Kernel Methods

We deviate from the original framework (see [4]) insofar as we calculate the full feature matrix Φ
only with respect to the training samples in order to align with the more common training method of

9

the other models. Thus, we operate in an inductive training setting instead of the original transductive
setting. Using the instance-wise normalized full feature matrix Φ, we perform separate regressions on
the two-point correlations cij(ρ) for each pair of nodes for each model variant. Then, we evaluate the
trained models on the validation split and select the model type and the respective hyperparameters
by choosing the configuration with the lowest validation MSE.

A.4 Hyperparameter Search

Before carrying out the experiments with different data set sizes on different grid sizes, we perform
various hyperparameter searches for each model to find well working configurations. Those searches
are performed on 4× 5 grids of the original data set provided by [4] with 100 Hamiltonians. We use
a 60/40 split for training and validation. Early stopping and learning rate scheduling are used as well.

We randomly select three initial learning rates l0 in the interval [1 × 10−4, 5 × 10−2] for each
combination of the other hyper parameters. For the FC-GNNs we vary the depth of the MLP layers
dMLP which are used in each MPNN-layer, the number of MPNN layers dMPNN and the hidden size of
the MLPs h. Thus the combinations of hyperparameters tested are {(l0, dMLP, dMPNN, h)| l0 ∼ LU [1×
10−4, 5×10−2], dMLP ∈ {1, 2, 3, 4, 6}, dMPNN ∈ {1, . . . , 9}, h ∈ {10, 20, 40, 80, 160, 320}} where
LU [a, b] denotes the log-uniform distribution over the interval [a, b].

Similarly, the PW-GNNs were tested with different initial learning rates l0, different MPNN depths
dMPNN, MLP depths dMLP and hidden sizes of the MLPs h as well and thus the combinations
of tested hyperparameters is also {(l0, dMLP, dMPNN, h)| l0 ∼ LU [1 × 10−4, 5 × 10−2], dMLP ∈
{1, 2, 3, 4, 6}, dMPNN ∈ {1, . . . , 9}, h ∈ {10, 20, 40, 80, 160, 320}}.

The MLP models are also tested with different initial learning rates l0, MLP depths dMLP and hidden
sizes h. Furthermore MLPs are also tested with different activation functions σact. Thus the tested
combinations are {(l0, dMLP, h, σact)| l0 ∼ LU [1 × 10−4, 5 × 10−2], dMLP ∈ {1, 2, 3, 4, 6}, h ∈
{10, 20, 40, 80, 160, 320}, σact ∈ {ReLU, tanh,SELU}}. The found configurations are summarized
in the Tab. 2

dMPNN dMLP h σactivation

PW-GNN 5 2 320 —
FC-GNN 6 3 40 —
MLP — 2 320 tanh

Table 2: Results of the hyperparameter optimization for each model.

The FC-GNNs and MLP models are found to be insensitive to the exact learning rates as long as the
order of magnitude stayed in certain ranges. Thus, we choose a learning rate of 1 × 10−3 and for
PW-GNNs a smaller learning rate of 1× 10−4 works well.

The NTK architecture is taken from [4]. The downstream regression models after the NTK are tuned in
the same manner as in [4]. There, each two-point correlation cij(ρ) is learned by a separate regression
model. One chooses from a linear kernel ridge regression model with different regularization strengths
α := 1

2K and α ∈ {0.25, 0.5, 1, 2, 4, 10, 20, 40} and a linear support vector regression model with
different regularization strengths K ∈ {0.0125, 0.025, 0.05, 0.125, 0.25, 0.5, 1, 2}.

A.5 Compute Resources

For our computations we use a NVIDIA GTX 1080Ti GPU and an Intel Xeon E5-2687W v4 CPU. A
graph based model typically finishes training in less than 10 minutes for smaller grid sizes. For larger
grids the training time increases to about 1h. The MLP and kernel methods usually finish training in
under 5 minutes for each grid size and NH.

A.6 Dependence of MSEtest on the system size n

In the following we list the fit results on the MSEtest in Tab. 4 and Tab. 3 for completeness

10

System size n: 4x5 5x5 6x5 7x5

PW-GNN -3.47 -3.66 -3.78 -3.93
FC-GNN -4.34 -4.57 -4.66 -4.84
MLP -3.40 -3.70 -3.83 -4.16
NTK2 -4.26 -4.43 -4.58 -4.80
NTK5 -3.98 -4.33 -4.55 -4.78

Table 3: Logarithm of the power-law (∝ aN b
H) pre-factor a′ = log a of the fits of MSEtest for different

system sizes n and models.

System size n: 4x5 5x5

PW-GNN
[
0.00021 −0.00084
−0.00084 0.00368

] [
0.00019 −0.00075
−0.00075 0.00328

]
FC-GNN

[
0.00008 −0.00031
−0.00031 0.00135

] [
0.00007 −0.00028
−0.00028 0.00121

]
MLP

[
0.00009 −0.00036
−0.00036 0.00159

] [
0.00015 −0.00062
−0.00062 0.00271

]
NTK2

[
0.00002 −0.00007
−0.00007 0.00029

] [
0.00002 −0.00007
−0.00007 0.00029

]
NTK5

[
0.00014 −0.00057
−0.00057 0.00249

] [
0.00007 −0.00027
−0.00027 0.0012

]
System size n: 6x5 7x5

PW-GNN
[

0.0001 −0.00041
−0.00041 0.0018

] [
0.00009 −0.00037
−0.00037 0.00162

]
FC-GNN

[
0.00009 −0.00035
−0.00035 0.00152

] [
0.00014 −0.00056
−0.00056 0.00246

]
MLP

[
0.00018 −0.00072
−0.00072 0.00314

] [
0.0002 −0.00082

−0.00082 0.00358

]
NTK2

[
0.00001 −0.00006
−0.00006 0.00026

] [
0.00002 −0.00008
−0.00008 0.00035

]
NTK5

[
0.00003 −0.00011
−0.00011 0.00046

] [
0.00002 −0.00006
−0.00006 0.00027

]
Table 4: Covariance matrices for the power-law fit (∝ aN b

H) parameters b and a′ = log a of the fits of
MSEtest for each system size n and model. The top left matrix element is the variance of parameter b

11

10 20 40 80 160 320

NH

0.001

0.003

0.005

0.007

0.009

M
S

E
te

st

4× 5 grid

10 20 40 80 160 320

NH

0.001

0.003

0.005

0.007

0.009

M
S

E
te

st

5× 5 grid

10 20 40 80 160 320

NH

0.001

0.003

0.005

0.007

0.009

M
S

E
te

st

6× 5 grid

10 20 40 80 160 320

NH

0.001

0.003

0.005

0.007

0.009

M
S

E
te

st

7× 5 grid

PW-GNN FC-GNN NTK2 NTK5 MLP fit

Figure 4: MSEtest over different number of training data set sizes NH with according power-law fits
for each model and grid size.

A.7 Dependence of MSEtest on the system size n for ĉij(ρ) with d = 1, 3, 5

20 25 30 35

system size n

0.02

0.03

0.04

M
S

E
te

st
,

d
=

1

20 25 30 35

system size n

0.004

0.005

0.006

0.007

M
S

E
te

st
,

d
=

3

20 25 30 35

system size n

0.002

0.003

0.004

0.005

M
S

E
te

st
,

d
=

5

PW-GNN FC-GNN NTK2 NTK5 MLP

Figure 5: MSEtest over system size n for distance d = 1, 3, 5 for NH = 10

12

20 25 30 35

system size n

0.01

0.02

0.03

0.04

M
S

E
te

st
,

d
=

1

20 25 30 35

system size n

0.004

0.005

M
S

E
te

st
,

d
=

3

20 25 30 35

system size n

0.002

0.003

0.004

M
S

E
te

st
,

d
=

5

PW-GNN FC-GNN NTK2 NTK5 MLP

Figure 6: MSEtest over system size n for distance d = 1, 3, 5 for NH = 20

20 25 30 35

system size n

0.01

0.02

0.03

M
S

E
te

st
,

d
=

1

20 25 30 35

system size n

0.003

0.004

0.005

0.006

M
S

E
te

st
,

d
=

3

20 25 30 35

system size n

0.002

0.003

0.004

0.005

M
S

E
te

st
,

d
=

5

PW-GNN FC-GNN NTK2 NTK5 MLP

Figure 7: MSEtest over system size n for distance d = 1, 3, 5 for NH = 40

20 25 30 35

system size n

0.01

0.02

0.03

M
S

E
te

st
,

d
=

1

20 25 30 35

system size n

0.002

0.003

0.004

0.005

M
S

E
te

st
,

d
=

3

20 25 30 35

system size n

0.002

0.003

0.004

M
S

E
te

st
,

d
=

5

PW-GNN FC-GNN NTK2 NTK5 MLP

Figure 8: MSEtest over system size n for distance d = 1, 3, 5 for NH = 80

13

20 25 30 35

system size n

0.01

0.02

0.03

M
S

E
te

st
,

d
=

1

20 25 30 35

system size n

0.002

0.003

0.004

M
S

E
te

st
,

d
=

3

20 25 30 35

system size n

0.0010

0.0015

0.0020

0.0025

0.0030

M
S

E
te

st
,

d
=

5

PW-GNN FC-GNN NTK2 NTK5 MLP

Figure 9: MSEtest over system size n for distance d = 1, 3, 5 for NH = 160

20 25 30 35

system size n

0.005

0.010

0.015

0.020

0.025

M
S

E
te

st
,

d
=

1

20 25 30 35

system size n

0.001

0.002

0.003

M
S

E
te

st
,

d
=

3

20 25 30 35

system size n

0.0010

0.0015

0.0020

M
S

E
te

st
,

d
=

5

PW-GNN FC-GNN NTK2 NTK5 MLP

Figure 10: MSEtest over system size n for distance d = 1, 3, 5 for NH = 320

14

	Problem Setting
	Methods
	Experiments and Discussion
	Conclusion and Outlook
	Broader Impact
	Appendix
	Structure of Input Data
	Model Architecture
	MLP Model
	GNN Models
	Kernel Based Models

	Training and Validation
	Training and Validation Details of Kernel Methods

	Hyperparameter Search
	Compute Resources
	Dependence of MSEtest on the system size n
	Dependence of MSEtest on the system size n for ij() with d=1,3,5

