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Abstract

Planet formation is a multi-scale process in which the coagulation of pm-sized
dust grains in protoplanetary disks is strongly influenced by the hydrodynamic
processes on scales of astronomical units (=~ 1.5 x 108 km). Studies are therefore
dependent on subgrid models to emulate the micro physics of dust coagulation
on top of a large scale hydrodynamic simulation. Numerical simulations which
include the relevant physical effects are complex and computationally expensive.
Here, we present a fast and accurate learned effective model for dust coagula-
tion, trained on data from high resolution numerical coagulation simulations. Our
model captures details of the dust coagulation process that were so far not tractable
with other dust coagulation prescriptions with similar computational efficiency.

1 Introduction to Dust Coagulation - The First Stage of Planet Formation

After the formation of a protostar, remaining material of its parent molecular cloud core forms a
so-called protoplanetary disk around it. About 1 % of the mass of this disk consists of solids in the
form of initially pm-sized carbonaceous silicate grains and ices. All solid objects, including the
rocky planets, the rocky cores of gas giant planets, comets, and asteroids form out of this material.
Subsequent collisions between the grains are caused by gas turbulence and differential aerodynamic
drag and lead to the formation of larger aggregates via sticking due to van der Waals forces. Since
relative velocities between the grains increase with their sizes, growth is halted at some point, when
collisions become too violent for sticking and instead lead to fragmentation (break-up). At this so-
called fragmentation barrier, an equilibrium size distribution is reached. Its form is determined by
the interior composition of the grains and their size-dependent relative velocities.

Theoretically, these processes are described by the Smoluchowski equation [1]—an integro-
differential equation that gives the mass exchange rates between grains on a continuous spectrum
of sizes. Only a few analytically solvable cases exist, which is why most numerical models of dust
coagulation rely on solution techniques for the discretized Smoluchowski equation, which is derived
by exchanging the continuum of grain sizes by a discreet grid of sizes. Solving the resulting system
of ODEs is an elaborate numerically task that requires the size grid to have >100 bins to lead to
meaningful results [2} 3]
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Figure 1: Output of a numerical simulation of dust coagulation in a protoplanetary disk (left side).
Initially pm-sized grains grow until they reach the fragmentation barrier. On the right-hand side we
show the equivalent power law size distributions derived from the actual simulation results on the
left. The simplified time series data is the training data for our machine learning model.

An example simulation is shown in the left hand side of The model is initialized with a
distribution of um-sized grains. Collisions first lead to an almost exponential growth phase, which,
in this case is halted by fragmentation after ~ 10% yr . The result is a top-heavy equilibrium distri-
bution of up to 2 mm-sized grains.

These multi-bin models are applicable to 0D [local; see[2] or 1D [vertically and azimuthally aver-
aged; see 4] disk models, but due to their high numerical cost, can not be applied in 3D models of
protoplanetary disks.

1.1 A Power Law Prescription for Dust Coagulation and the Need for a Machine Learning
Approach

We aim to develop an approach in which the dust size distribution is described by a truncated power
law, instead of a discretized distribution with hundreds of size bins. Our goal is to make the modeling
of dust coagulation on top of large scale hydrodynamic simulations more feasible. For a given total
dust column density o, and a minimum particle size ami, = 10~° cm, this simplified distribution
can be described by only two parameters:

amax : The size of the largest particles (truncation size of the power law)
o1 :  The column density of particles larger than ajy = \/@max Gmin-

It can be shown that the exponent of the power law size distribution o(a) oc aP™ is then given

by p = % — 4, where 0p = o0y — 01 is the column density of particles smaller than

ain. In contrast to other approximate models like two-pop-py [3l, this approach makes it possible
to retain information about the overall shape of the size distribution. It is, however, not trivial to
find a mathematical description for the time evolution of the power law distribution without making
strongly simplifying assumptions. We therefore propose a machine learning aided power law model,
which predicts the time evolution of the simplified distribution.

2 Method

For our method, we trained a Multilayer Perceptron (MLP) on the evolution of power law grain size
distributions derived from detailed multi-bin simulations of dust coagulation. The general workflow
of our model is laid out in The inputs of our neural network are the size distribution
parameters, and the parameters of the protoplanetary disk environment, like gas temperature, gas
density, etc. The model’s output are the respective time derivatives Oyamax and 0zo1, which are then
used as source terms in a numerical integration scheme.

Our simple neural network model therefore makes it possible to simulate the temporal evolution of
the physical system, similar to other machine learning approaches explored in recent years [6} [7]].
Our MLP consists of 3 hidden layers, each with 100 nodes, 14 nodes in the input layer, and two
nodes in the output layer. The layers are fully connected with ReLU activation functions.
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Figure 2: General outline of the trained machine learning subgrid model of dust coagulation. An
artificial neural network is trained to predict the time derivatives of the size distribution’s power law
representation. The resulting source term is used to evolve the distribution in time.
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2.1 Training Data Generation

We create our training data using the COALA dust coagulation routine, which was provided by Til
Birnstiel and Sebastian Stammler, and which was already used in a hydrodynamic simulation [8].
COALA is a local dust coagulation code, written in FORTRAN that numerically solves the Smolu-
chowski equation on a mass grid (in our case with 171 bins). 10000 dust coagulation simulations
have been created, each with 150 time outputs. The dust distributions are evolved over a time
corresponding to 50 dust growth time scales, or maximally 10° yr to ensure that an equilibrium is
reached at the end of each simulation. The initial conditions are chosen randomly from a parameter
space that represents the known typical conditions within protoplanetary disks from simulations and
observations.

2.2 Training Data Pre-Processing

As a first step, we derive the two parameters of the power law size distributions from the full size
distributions with 171 size bins. We define an,y as the particle size for which f " g(a)da/ow =

0.99 holds, i.e. 99 % of the total mass of the particles has sizes smaller than amdx. o7 is then
derived by summing up the mass of all bins with sizes larger than @iy = \/Gmax@min- This results
in 10000 150 time series data points for both quantities, from which we derive the respective time
derivatives. For training, we scale the data to a range from O to 1 and divide the dataset into 8000
training data simulations and 2000 test data simulation. We found that even small deviations from the
actual equilibrium states can lead to large errors after time integration with the predicted gradients.
Our experiments have shown that the best training results are achieved if we use the tenth root of the
time derivatives, multiplied by their sign as the training data. In that way, also small scale features
around the equilibrium states (J; = 0) can be learned, leading to the best results during numerical
integration and to the correct equilibrium distribution.

2.3 Training Procedure

We train our neural network model within the Pytorch Lightning framework [9L[10]], using the Adam
optimization algorithm [11]]. The batch size is set to 1000, we apply a learning rate of 3 x 1074,
and train the model for 1000 epochs. We employ the Mean Absolute Percentage Error [MAPE, [12]
as a loss function, which also penalized deviations of small absolute value. To avoid division by



zero when applying the loss function, we offset the normalized training data by +0.1. Training was
conducted on a single Nvidia A100-40GB GPU.

3 Results

After training we evaluate the resulting model by using the predicted time derivatives for numerical
time integration of the setups from the training data set (see our method in and https:
//github.com/ThomasPfeil/2popML). For the tests performed in this work, we utilize an explicit
Euler scheme, as shown in[Figure 2| We limit the time step to ensure numerical stability for the given
source terms as

) ; ey

with C = 0.1. In we present an example simulation from the test dataset. The average
deviation from the actual time series is about ~ 4 %. We have conducted this procedure with all
2000 parameter combinations from the test data set. On average, one full integration run takes
~ 73 ms wall clock time, compared to 791 ms for the full numerical model on the same machine.
11 integrations failed, reaching either negative dust densities or errors larger than 1000 %, resulting
in a 99.45 % success rate.
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For the 1989 successfully finished test simulations, we plot the distribution of the mean relative de-
viation of each time series to the respective actual time series in[Figure 4} On average, the deviation
between the integration series conducted with the model prediction and the actual data is ~ 4 % for
the maximum particle size, and ~ 0.5 % for the column density of large particles.
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Figure 3: Result of a numerical integration with the neural network predictions for the respective
time derivatives.
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Figure 4: Distribution of deviations from the actual simulation time series for both simulated pa-
rameters amax and oy.

4 Conclusions and Outlook

Our results strongly suggest that numerical efforts to study the early phases of planet formation can
benefit from the use of machine learning techniques. Our neural network model was capable of
predicting gradients with high enough precision to allow for time integration of the vast majority
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of the test data set (99.45 % of the simulations). Our model could therefore be used as a fast and
accurate alternative to commonly used full coagulation simulations. Due to its much shorter runtime,
it could, for the first time, make large scale hydrodynamic simulations of protoplanetary disks with
dust coagulation feasible.

Since our model is trained on simulation data with various parameter combinations, we expect it
to produce accurate results as long as the applied model parameters lie within the ranges used for
training. This means, the most important limitation of our model lies in the range of applicable
stellar parameters and disk parameters, e.g., stellar mass (varies from 0.01 to 1.4 M), distances to
the central star (varied from 0.1 to 100 au), etc.

Further testing is needed for the use of our model in disks with substructure, e.g., disks with plan-
etary gaps and pressure bumps. It is not clear if our model will produce reliable outputs in these
environments, since it was trained on parameter combinations derived from simple power law disks
(without substructure).

Testing this requires an implementation of our neural network model as a subgrid model into a
hydrodynamics code to simulate gas and dust dynamics in protoplanetary disks. We therefore aim
to couple our model to the PLUTQO code [13]]. Once a stable run is achieved, we can test our subgrid
model in an evolving environment and under the conditions in substructures.

The structural similarity of our approach to semi-analytic physical models could also
make it possible to interpret the trained neural network in the future and derive insights into the
underlying physics, which could make our results interpretable [[14H16].
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Impact Statement

Our work could be of benefit for future numerical studies of protoplanetary disks and planetesimal
formation. To the current date, only one two-dimensional hydrodynamic simulation, including a full
dust coagulation model, exists, which was published [8]. The authors also highlight the extensive
computational cost, which only allowed them to run a single simulation. Our model reduces the
computational cost of these kinds of models significantly. Firstly, it allows to model a dust size
distribution with only two additional dust fluids, compared to the 171 dust fluids in full coagulation
models. This means the time to compute dust transport is already reduced by a factor of ~ 100.
Secondly, the computing time for the coagulation step is significantly reduced. From our results,
discussed in we expect a speed up of a factor of ~ 10. Therefore, larger simulation runs
and parameter studies could be conducted, benefiting our understanding of the dynamics of gas and
dust in protoplanetary disks, the interpretation of observational data, and our understanding of the
formation of planetesimals—the building blocks of planets.

We can not identify any ethical implications of our work.
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