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Abstract

A central problem in computational biophysics is protein structure prediction, i.e.,
finding the optimal folding of a given amino acid sequence. This problem has been
studied in a classical abstract model, the HP model, where the protein is modeled
as a sequence of H (hydrophobic) and P (polar) amino acids on a lattice. The
objective is to find conformations maximizing H-H contacts. It is known that even
in this reduced setting, the problem is intractable (NP-hard). In this work, we apply
deep reinforcement learning (DRL) to the two-dimensional HP model. We can
obtain the best known conformations for benchmark HP sequences with lengths
from 20 to 50. Our DRL is based on a deep Q-network (DQN). We find that a
DQN based on long short-term memory (LSTM) architecture greatly enhances the
RL learning ability and significantly improves the search process. DRL can sample
the state space efficiently, without the need of manual heuristics. Experimentally
we show that it can find multiple distinct best-known solutions per trial. This study
demonstrates the effectiveness of deep reinforcement learning in the HP model for
protein folding.

1 Introduction

Predicting protein structure from a sequence of amino acids is one of the central problems in
computational biophysics research [1, 2]. From the viewpoint of statistical physics, proteins usually
fold into the optimal structures with minimum free energies [3]. Following similar approaches to
address other complicated problems, physicists have developed an abstract model, the HP model, to
simplify the protein structure prediction problem [4]. In the HP model, a protein is represented as a
chain of monomers on a 2D or 3D lattice. Each monomer can be either H, standing for hydrophobic,
or P, standing for polar. The task is to find the optimal structure for a given sequence of H and P, such
as HPPHPH in Fig. 1. The optimal structure is defined as the structure with the maximum number
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Figure 1: HP model on a 2D square lattice. Example HP sequence, HPPHPH, folds into a
conformation with two H-H contacts. The energy of this conformation is optimal, Estate = −2.

of H-H contacts. The physical reasoning behind the HP model is that protein structural stability is
contributed by the attraction between hydrophobic residues to a large extent [5–7].

Even though the HP model is already a simplified model for protein folding, finding the optimal
structure in the HP model is NP-hard [8, 9, 1]. We highlight that the HP model represents the ab
initio paradigm heavily rooted in biophysics, which is different from the AlphaFold [10, 11] and
the academia counterpart ‘RoseTTaFold’ [12] methods that rely heavily on protein structure data.
The value of ab initio approaches is that they may help to better understand the problem. In this
study, we are firstly motivated to apply reinforcement learning (RL) to the HP model and evaluate its
effectiveness. Secondly, in recent years, a couple of studies have attempted various RL approaches,
and thus we are also motivated to compare our performance with related work. We investigate what
“ingredients” are best needed for a simple “recipe” to solve the HP model using a DRL setup. Here,
we will start from a basic prototypical version of the original DQN [13, 14], then we gradually
modify/add/subtract components as needed, and finally construct a DRL setup as shown in Fig. 2. Our
DRL setup for the HP model can achieve best-known conformations for test benchmark sequences
with lengths up to 50, outperforming previous RL approaches on the HP model.

2 Methodology

RL for SAW: The HP model folding process is set up as a self-avoiding walk (SAW). Each successive
HP unit is placed onto the lattice site following the square-grid constraint and the self-avoiding
constraint. The SAW uses a relative direction scheme consisting of A3 = {L,F,R}. A contact is
formed when two amino acid units are adjacent on the lattice grid sites, but not adjacent in the HP
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Figure 2: Overview of our DRL method with LSTM-based DQN. Enclosed in the purple border
are two NNs for the learning, the Policy Network and the Target Network. The TD error is used
to calculate the loss. Back propagation (B.P. in green) then tunes the learnable parameters θ in the
Policy Network. The HP model SAW agent interacts with the RL environment at each time step t by
taking actions based on the ϵ-greedy method. Action-state-reward experiences et are stored in replay
memory Dt. Mini-batches B of experiences are uniformly sampled for DQN training.
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sequence string, i.e.,not linked via the peptide backbone. Contacts between two hydrophobic H units
are called H-H contacts. The free energy of a conformation or state, denoted as Estate, is the negative
value of the number of H-H contacts. Fig. 1 shows a conformation of an HP sequence of length
N = 6 with Estate = −2. In this study, we view solving the HP model as optimal SAW path finding
to optimize the HP model score or number of H-H contacts. For each HP sequence, the ‘folding’
is a SAW path as the HP backbone and its comprising units are embedded in the lattice grid in a
non-overlapping fashion. Note the sequential decision making nature of the SAW — the optimal HP
model folding is a sequence of walk-steps that traces out the optimal SAW path. Thus, the problem
can be framed and potentially solved by RL/DRL.

DQN Setup: Fig. 2 gives an overview of our DRL method using DQN. For RL based experiments,
we adopt an ϵ-greedy approach, where ϵ is the probability of the agent selecting an action at random
and it decays following an exponential schedule. The ϵ-greedy approach in RL is ‘sanity-checked’ by
comparing with a baseline strategy that randomly explore the state space throughout, called ‘RAND’.
In ‘RAND’, ϵ is set to be a constant, ϵ = ϵmax = 100% for all episodes. Our RL environment has
a sparse-reward setting. The agent receives reward only at the end of a finished SAW episode, i.e.,
after the terminal time step T for an episodic walk. The discount factor is set to be 0.98. For an
HP sequence, with each state-action transition to a new state st+1, the RL environment computes
the number of H-H contacts or |Estate| of st+1 . The input to the neural networks (NN) in DQN is a
one-hot encoded vector [15] representing the state, which captures both the actions performed so far
as well as the sequence information of the whole chain as illustrated in Fig. 3. These one-hot encoded
arrays are then fed sequentially into the RNN of the DQN. Through empirical testing, we found a
two-layer 256-hidden-state stacked LSTM architecture is sufficient for HP sequences shorter than
N ≤ 36. For longer HP sequences (N = 48, 50), a three-layer LSTM with 512 hidden states can
achieve better results. We store the last min(50000, ψ/10) number of time steps of transitions in the
replay memory buffer, where ψ is the total number of episodes per trial. Our mini-batch size used in
DRL training is 32. The optimizer used for learning is Adam [16], with a learning rate of 0.0005.
NNs are implemented with the PyTorch framework version 1.10.1, and run on CUDA version 11.3.
We use the open source Python library OpenAI Gym to develop the RL environment [17]. Our HP
model on a 2D square lattice RL environment is extended and refactored based on the open source
repository ‘gym-lattice’ [18]. All experiments are repeated four times with four random seeds to
ensure reproducibility.

Benchmark HP Sequences: A popular benchmark sequence set (Istrail) with documented best-
known lowest energy has been referred to by numerous publications in the field [19, 20], and is in-
cluded in all the related work. For the DRL experiments,N -mers, whereN ∈ {20, 24, 25, 36, 48, 50},
are selected from the Istrail benchmark for comparison with related work. Table 1 shows the best-
known energies of selected lengths and their exact sequences.

Figure 3: The SAW on the left is not yet complete as there are still two more HP units to be placed
onto the 2D square lattice. The current SAW state is converted into a sequence vector of length N
representing movement status and monomer type. The first two HP units are fixed, so the action
associated is ‘∅’. The remaining two HP units are not yet placed on the lattice and are indicated by
place-holder ‘_’ to mean actions to be determined. The action sequence for the current SAW state is
L,R,R, F . Finally we encode the sequence data with one-hot encoding for 6 features to preserve
their categorical properties.
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Table 1: Selected benchmark HP sequences from the Istrail Benchmark with their best known
energies.
N -mer ID Length HP Sequence Best Known Energy
20mer-A 20 HPHPPHHPHPPHPHHPPHPH −9
20mer-B 20 HHHPPHPHPHPPHPHPHPPH −10
24mer 24 HHPPHPPHPPHPPHPPHPPHPPHH −9
25mer 25 PPHPPHHPPPPHHPPPPHHPPPPHH −8
36mer 36 PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP −14
48mer 48 PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH −23
50mer 50 HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHPHPHPHH −21

3 Results & Discussions

Search Process with DRL: For each of the selected benchmark HP sequences from Table 1, we
first establish the baseline performance with pure random explorations, called ‘RAND’ experiments.
For the ‘RAND’ experiments, the HP sequence N -mer is allowed to randomly explore, pick valid
actions at random during each time step, and grow the SAW. In contrast to ‘RAND’, in our DRL
experiments, the N -mer chooses actions based on the ϵ-greedy algorithm and balances exploration
with exploitation. Fig. 4 shows the search process in terms of learning curves of RAND and DRL.
For all selected benchmark sequences, DRL displays an effective search process, as shown in the
downward curve in red in Fig. 4, and consistently finds the best-known solutions in the exploitation
phase in all of the four random seed trials. Table 2 shows the performance of the search process on
the benchmark HP sequences from Table 1.

Performance Comparison with Related RL Work: We compare our DRL performance with
related work’s reported results in Table 2. Our DRL design follows the original DQN structure
from DeepMind paper [14], and we show that the prototypical DQN algorithm is sufficient to be
applied on optimal SAW path finding tasks. But different from previous work’s attempt using DQN
(and advanced variants of DQN), we design a suitable state representation and NN architecture to

Figure 4: Learning curves of DRL (red) and RAND (blue) on the 100K-episode-trial of 20mer-B,
500K-episode-trial of 36mer, and 600K-episode-trial of 50mer. X-axis is the index of episodes in
progression. Y-axis denotes the energy found by the agent. The curves are plotted with the moving
minimum of 200 episodes. The shaded area represents the standard deviation. Note the best-known
minimal energies for 20mer-B, 36mer, and 50mer are −10, −14, −21 respectively. Experiments are
repeated four times on four random seeds for both RAND and DRL methods.

Table 2: Performance comparison among related RL work on Istrail Benchmark sequences. Table
entries are lowest energies of Estate obtained. ‘-’ indicates information not provided. Results matching
the best known energies are highlighted in red bold. Second-closest results are highlighted in blue.
N -mer ID Dogan-AntQ (2015) [21] Li-FoldingZero (2018) [22] Wu-QL (2019) [23] Yu-DRL (2020) [24]a Random Ours Best Known
20mer-A - −9 −9 −6 | −8 −9 −9 −9
20mer-B - - −10 −8 | −9 −9 −10 −10
24mer −9 −8 - −6 | −8 −9 −9 −9
25mer - −7 - - | −7 −7 −8 −8
36mer −13 −13 - - | −13 −12 −14 −14
48mer −19 −18 - - −17 −23 −23
50mer - −18 - - −15 −21 −21

a Yu et al.[24] reported two classes of RL methods, DRL and AlphaGo Zero with Pretraining. Here the two results
are separated by ‘|’.
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better utilize the inherent capability of DQN. Our LSTM-based DQN is able to reach best-known
solutions for all selected benchmark sequences, and achieves better performance on the HP model
than previous results in the literature.

Search Effectiveness: For all four trials, the DRL agent is able to find many distinct best-known
solutions. This indicates that our DRL method does not get stuck in a local optimum, but actively
traverses the search space for better solutions. We present some of the best-known solutions found by
our method for the 48mer in Fig. 5.

Figure 5: Examples of four best-known solutions found by DRL agent for 48mer with Estate = −23.
Note these solutions are invariant to translational and rotational symmetries.

4 Conclusion

We demonstrate the effectiveness of applying DRL to the HP model for protein folding. Our “recipe"
for DRL setup achieves best-known conformations of benchmark HP sequences ranging from length
20 to 50, which is better than previous results in the literature. We show that the prototypical DQN
algorithm is sufficient to be applied to the HP model protein folding but a suitable state representation
and LSTM architecture are needed. The LSTM architecture endows DRL with enhanced learning
capacity, as LSTM’s sequential representation ability captures long range interactions, which are
key to protein folding. We present our considerations and design choices in this paper as a possible
prototype for future RL application to HP model research, which should be extensible to incorporate
more recent DRL developments.

Data Availability Statement

Source code available as a public open-source repository at GitHub Repo URL: https://github
.com/CompSoftMatterBiophysics-CityU-HK/Applying-DRL-to-HP-Model-for-Prote
in-Structure-Prediction.

Conformation database showing the distinct best-known and next best conformations is available as
a Zenodo open data repository via a link in our GitHub repository.

Broader Impact

The HP model is a classical and one of the most extensively studied physical model for protein
structure prediction from sequences. While the HP model appears to be very simple, solving it is
proven to be NP-hard. The value of this work lies in two aspects. First, the famous HP model is
solved using an emerging approach of DRL, and good results are obtained. While there have been a
few recent attempts of applying RL on the HP model, we have obtained better results than previous
results in the literature. Second, this work expands the application areas of the machine learning
(ML). It is often unclear whether ML can achieve good performance in a new problem without
implementation. More importantly, to maximize the ML performance, many components need to be
optimized, which is done in this work.
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The HP model is also an ab initio paradigm to model and understand protein folding, which is an
alternative to the recent popular trend of data-driven and learning approaches. Thus our study can
help bring new or revisit classical perspectives into the current protein folding research discussions.

No confidential or private data were used in this study. And this work is likely not going to present
any foreseeable short-term negative societal consequence.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Briefly in

Broader Impact section
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
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mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
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(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
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