
Atmospheric retrievals of exoplanets using learned
parameterizations of pressure-temperature profiles

Timothy D. Gebhard
Max Planck Institute for Intelligent Systems, Tübingen, Germany

Institute for Particle Physics & Astrophysics, ETH Zurich, Switzerland
timothy.gebhard@tuebingen.mpg.de

Daniel Angerhausen
Institute for Particle Physics & Astrophysics, ETH Zurich, Switzerland

Björn Konrad
Institute for Particle Physics & Astrophysics, ETH Zurich, Switzerland

Eleonora Alei
Institute for Particle Physics & Astrophysics, ETH Zurich, Switzerland

Sascha P. Quanz
Institute for Particle Physics & Astrophysics, ETH Zurich, Switzerland

Bernhard Schölkopf
Max Planck Institute for Intelligent Systems, Tübingen, Germany

Department of Computer Science, ETH Zurich, Switzerland

Abstract

We describe a new, learning-based approach for parameterizing the relationship
between pressure and temperature in the atmosphere of an exoplanet. Our method
can be used, for example, when estimating the parameters characterizing a planet’s
atmosphere from an observation of its spectrum with Bayesian inference methods
(“atmospheric retrieval”). On two data sets, we show that our method requires
fewer parameters and achieves, on average, better reconstruction quality than ex-
isting methods, all while still integrating easily into existing retrieval frameworks.
This may help the analysis of exoplanet observations as well as the design of future
instruments by speeding up inference, freeing up resources to retrieve more param-
eters, and paving a way to using more realistic atmospheric models for retrievals.

1 Introduction

Atmospheric retrievals (ARs) are an important inference problem in the field of exoplanet science.
The term refers to the task where, given an observed empirical spectrum of a planet (i.e., photon flux as
a function of wavelength), one tries to infer a set of parameters θ that describes the atmosphere of the
planet, such as the chemical composition, the presence of clouds, or the thermal structure [28]. This
is a classic inverse problem: While the forward direction (i.e., going from parameters to a spectrum)
can be solved approximately using analytical prescriptions and simulators, the backward direction
is generally much more challenging. A standard approach to ARs is to combine a forward simulator
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Figure 1: A typical retrieval workflow takes an observation y (a spectrum of an exoplanet) and,
usually via nested sampling, infers from it a posterior distribution for the parameters θ that describe
the planet’s atmosphere. Marked in red is the part of the retrieval loop that we focus on in this paper.
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Figure 2: A PT profile is encoded into a latent variable z ∈ Rn, which is used to condition the
decoder D. Once conditioned, D(· | z) is a function that maps (log)-pressures onto temperatures.

with Bayesian inference methods such as nested sampling [37]: by repeatedly sampling a value for the
parameters of interest (using a prior π(θ)), simulating the corresponding spectrum ŷ, and comparing
it to the observation y through some likelihood function L, one can compute a posterior p(θ | y). We
illustrate this process (including the aspects described in the next paragraph) in fig. 1.

One key ingredient for this process is the pressure-temperature (PT) profile of the atmosphere,
which is a function that maps pressures onto temperatures and thus provides a one-dimensional
approximation of the thermal structure.1 To find the PT profile of an atmosphere during a retrieval,
one may either solve a set of radiative transfer (RT) equations, or use an ad hoc fitting function that
provides the PT profile in a parameterized form [22, 25, 35]. Due to the available spectral resolution
(i.e., the size of the wavelength bins in which the photon flux is sampled) and computational concerns,
in practice, the latter approach is often preferred, and different parameterizations have been proposed
in the literature. Some approaches [9, 20, 25, 27] assume particular analytical descriptions for the
relationship between P and T , while others use splines [41] or low-order polynomials [24]. These
approaches typically use 4–6 parameters, which is a substantial fraction of dim(θ) (usually in the
range 10 to 15) and assume a fixed functional form. Nevertheless, they still provide only a simplified
approximation of the PT profile that one would find using RT and, of course, they also allow to
parameterize many functions that are not valid PT profiles, thus reducing sampling efficiency.

In this work, we present a fundamentally new approach to parameterizing PT profiles, which does not
assume a fixed functional form for the mapping P 7→ T , but instead uses a conditional latent variable
model to learn efficient neural representations of realistic, physically consistent PT profiles from data.

2 Method

Our goal, in principle, is to learn a distribution over functions P 7→ T that can be sampled efficiently
during an AR to find the PT profile that best matches the observational data. The method that we
propose for this is essentially a reinterpretation of a neural process [14, 15], although additional
inspiration came from works such as Dupont et al. [11]. The general idea, illustrated in fig. 2, is
to use two neural networks; an encoder E and a (conditional) decoder D. At training time, E takes in
a PT profile, consisting of a vector P = (p1, . . . , pd) of pressure values2 and a vector T = (t1, . . . , td)
of corresponding temperatures, and outputs a latent variable z ∈ Rn, that is, z = E(P ,T ). We can
think of z as an abstract representation of the PT profile (P ,T ). The decoder D is now conditioned
on z, and D(· | z) is evaluated on P to produce T̂ = (D(p1 | z), . . . ,D(pp | z)). We train E and D jointly
to minimize the distance between T and T̂ , subject to some constraints on z: During an AR, the

1In reality, of course, the thermal structure is also a function of the location—the North Pole is cooler than the
equator. However, atmospheric retrievals with full 3D climate models are currently computationally infeasible.

2For simplicity, we always talk about the pressure P; in practice, our implementation actually uses log10(P).
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nested sampling procedure will propose values for z and use D to generate PT profiles. For this to
work properly, we want to make sure that similar PT profiles are assigned similar values of z, and
that the latent space does not have any “holes” where z cannot be decoded into a sensible PT profile.

To place such a prior on z, we do not use the common evidence lower-bound (ELBO) objective,
but instead take inspiration from the idea of an MMD-VAE [42, 43]. MMD-VAEs are a variant of
variational auto-encoders that replace the usual ELBO loss with a kernel-based estimate of the distance
between two distributions, namely the maximum mean discrepancy (MMD) [18, 19]. The main
reason for this choice is that, for sufficiently powerful decoders, training with the ELBO objective
can result in a model that ignores the latent variable [5]. This is not desirable for our application; if
we want to use the trained decoder in a retrieval loop, we want to be sure that the mutual information
between z and T̂ is maximal. Ultimately, we are minimizing the following objective function:

L(z,T , T̂ ) = mean
(
(T − T̂ )2

)
+ β ·MMD(z, S ) , (1)

which corresponds to the assumption of a Gaussian likelihood function. S denotes a sample from
a n-dimensional standard normal distribution; the size of S matches the batch size. The factor β ∈ R+
controls the trade-off between the reconstruction error and the prior on z. We chose β = 1000 here.

3 Data sets, model specification, implementation, and training details

Data sets We use two different data sets (for two different types of exoplanets) to experimentally val-
idate our proposed method: (1) The PyAtmos data set [3, 6, 7] consists of 124 314 physically and chem-
ically self-consistent atmospheres of Earth-like planets around a solar-type star, which were obtained
with Atmos [2, 30], a one-dimensional coupled photochemistry-climate model. (2) The Goyal-2020
data set [17] contains 11 290 atmospheres of hot Jupiter-like planets simulated with Atmo [1, 10]. We
split both data sets randomly into a training and a test set: For PyAtmos, we use 100k PT profiles for
training and validation; for Goyal-2020, we use 10k. The rest of the data are held out for evaluation.

Model specification For both for the encoder and the decoder, we use a simple multi-layer percep-
tron (MLP) with LeakyReLU activation functions. Encoders use 5 layers with 512 neurons; decoders
have 6 layers with 256 neurons. We have also briefly experimented with encoders akin to the original
NP work [14, 15] (i.e., encode each point of a PT profile independently as zi = E(pi, ti) and then
aggregate them as z = mean(zi)), as well as SIREN-like decoders [36], and found that they give very
similar performance. Future work may study this in more detail or perform proper hyper-parameter
optimization; however, for this first proof-of-concept, even simple MLPs give very good results.

Implementation and training details We implement all of our experiments in PyTorch [32] in com-
bination with the Lightning wrapper [12]. Models are trained with AdamW [26] for up to 1000 epochs
using a random 90%/10% split for training and validation. The initial learning rate is set to 3 × 10−4,
and we use a ReduceLROnPlateau(patience=20, factor=0.5) scheduler to decrease it through-
out training. The batch size is set to 1024 (PyAtmos) or 256 (Goyal-2020). If the validation loss does
not decrease for 100 epochs, we stop early, and we only save the model with the lowest validation loss.
Training is fast: Models usually converge in < 1 hour when using a modern GPU (e.g., NVIDA V100).

4 Experiments and results

Reconstruction quality for different dim(z) As a first experiment, we train models on both of our
data sets for dim(z) ∈ {2, 3, 4, 5}. Then, we use the encoder E to compute an initial encoding zinitial
for each PT profile in the test set. This initial value is then refined using an AdamW optimizer to
find zrefined = argminz(T − D(P | z))2. After all, we cannot use the encoder during a retrieval, and we
are only interested how well the decoder—using the “correct” z—can approximate a given PT profile.
We repeat all these steps three times for every model using different random seeds that control the
initialization and the train / validation split. Exemplary results are shown in fig. 3, where we compare
the fit using our trained decoder with a polynomial with the same number of free parameters. We
find that, for all values of dim(z), our model gives a much better approximation of the PT profile
than the baseline; in particular, sharp kinks are reproduced much better than what is possible with
a low-order polynomial. In fig. 4, we provide more systematic evidence for this. For all PT profiles in
the test set, we have computed the mean absolute difference between the true and the best fit profile.
Looking at the distributions, we find that even for dim(z) = 2, our model has (on average) a lower
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Figure 3: A random PT profile from the Goyal-2020 test set (black dots), and the best fit with both our
trained model (orange) and a polynomial (green). By d, we denote the number of fitting parameters,
that is, dim(z) for our model, or the number of coefficients of of the polynomial. The uncertainties on
our model (due to different random seeds) are too small to be visible in this plot.
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(b) Results for Goyal-2020 data set.

Figure 4: Distribution of the mean absolute error (per profile on the test set) for our method and the
baseline. By d, we again denote the number of fitting parameters. The dashed lines mark the median of
the respective distribution; see table 1 for exact values. Error bands are due to multiple random seeds.

error than the 5-parameter baseline. Additionally, unlike for the baseline, the utility of additional
parameters decreases for our method, making it easier to trade off accuracy against dim(z).

Atmospheric retrieval with a learned PT profile parameterization To show that our method
is readily integrated into existing AR frameworks and yields reliable results, we add our model
to the AR routine introduced in Konrad et al. [24], which is based on petitRADTRANS [31] and
PyMultiNest [4]. We run an AR on the spectrum of an Earth-twin at 10 pc orbiting a Sun-like star with
a photon noise signal-to-noise ratio of 10. We compare the performance of a version of our model
with dim(z) = 2 to a fourth-order polynomial PT model (i.e., five fitting parameters). The results of
this experiment are shown in fig. 5. We find that the posterior on the thermal structure obtained with
our model matches the ground truth well, except at the lowest pressures. However, as shown by the
emission contribution function, these layers contribute virtually nothing to the observed spectrum,
making them hard to constrain. Despite using only 2 instead of 5 fitting parameters, our model gives
a (visually) better posterior than the baseline, in particular for the surface pressure and temperature.

5 Discussion and outlook

Exoplanet science is still a fast-growing field, and with now 5000 confirmed detections [8], the char-
acterization of planets is becoming a main focus of observations and the development of future instru-
ments. Our method may be helpful for both of these aspects: Speeding up ARs, or allowing to retrieve
additional parameters of interest (e.g., chemical species in the atmosphere) does not only benefit the
analysis of actual observational data (from, e.g., the James Webb Space Telescope), but is also valuable
for the design phase of new generation exoplanet instruments and large international space missions
such as LIFE [34] or LUVOIR/HabEx [16, 39], which require thousands of simulated retrievals.

Of course, crucially, the validity of our approach hinges on the availability of appropriate training data:
there is no guarantee for our method to perform well if the true PT profile is not covered by the training
distribution. Generating suitable grids of self-consistent atmospheres covering a broad range of exo-
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Table 1: Median of the distribution of the mean absolute error on the test set (in Kelvin), for both
our datasets, and for both our model and the polynomial baseline. We denote the number of fitting
parameters as d. The values here correspond directly to the dashed lines in fig. 4.

PyAtmos Goyal-2020

d = 2 d = 3 d = 4 d = 5 d = 2 d = 3 d = 4 d = 5

Baseline 10.65 5.22 4.62 2.83 95.87 74.92 71.95 44.79
Our method 1.23 0.53 0.38 0.30 22.85 9.62 6.01 4.61
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Figure 5: Results of our retrieval experiment: The left panel shows the input PT profile that was
used to simulate the “observed” spectrum, as well as the posteriors obtained using our model and the
polynomial baseline. The different shades (or line types) indicate percentiles: 5%-95%, 15%-85%,
25%-75%, and 35%-65%. The inset in the top right corner shows the posterior for the surface pressure
P0 and temperature T0. The panel on the right displays the emission contribution function, that is, a
relative measure of how much the atmosphere at a given pressure contributes to the overall spectrum.

planets types and parameters likely requires a joint community effort. However, as more such data sets
become available, we may think about extending our method further and use it, for instance, not only
for PT profiles, but also to parameterize abundances of chemical species as a function of pressure.
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