
CAPE: Channel-Attention-Based PDE Parameter
Embeddings for SciML

Makoto Takamoto∗

NEC Labs Europe
Francesco Alesiani
NEC Labs Europe

Mathias Niepert
University of Stuttgart

Abstract

Scientific Machine Learning (SciML) is concerned with the development of ma-
chine learning methods for emulating physical systems governed by partial differ-
ential equations (PDE). ML-based surrogate models substitute inefficient and often
non-differentiable numerical simulation algorithms and find multiple applications
such as weather forecasting and molecular dynamics. While a number of ML-based
methods for approximating the solutions of PDEs have been proposed in recent
years, they typically do not consider the parameters of the PDEs, making it difficult
for the ML surrogate models to generalize to PDE parameters not seen during
training. We propose a new channel-attention-based parameter embedding (CAPE)
component for scientific machine learning models. The CAPE module can be com-
bined with any neural PDE solver allowing it to adapt to unseen PDE parameters
without harming the original model’s performance. We compare CAPE using a
PDE benchmark and obtain significant improvements over the base models.

1 Introduction

Many real-world phenomena, ranging from macroscopic weather forecasts to microscopic molecular
dynamics, can be modeled with partial differential equations (PDEs). To obtain those PDEs’ solution,
numerical simulation methods have been developed for many years and have achieved a high level
of accuracy in solving these equations. However, numerical methods are resource intensive and
time-consuming even when run on larger supercomputers to obtain sufficiently accurate results.

Recently, there has been a rapidly growing interest in machine learning methods for the problem of
solving PDEs due to their various applications in science and engineering Guo et al. (2016); Lusch
et al. (2018); Sirignano & Spiliopoulos (2018); Raissi (2018); Kim et al. (2019); Hsieh et al. (2019);
Bar-Sinai et al. (2019); Bhatnagar et al. (2019); Pfaff et al. (2020); Wang et al. (2020); Khoo et al.
(2021). A considerable number of papers have shown the advantage of ML-based surrogate models.
The majority of these methods, however, are purely data-driven, which does not allow us to change
PDE parameters. Although a few models are taking into account PDE parameters, they are tailored
to specific neural networks and cannot be used with other state-of-the-art methods. This makes it
difficult for the SciML community to develop models with high generalization capacity not only for
the initial conditions but both for different types of PDEs and PDE parameters.

To overcome the shortcomings of existing data-driven SciML models, we propose a new and effective
parameter embedding module by utilizing the channel-attention method. The crucial idea is that a
neural network generates intermediate (approximated) field data for future time steps which are then
interpolated by a BASE model such as the FNO (Li et al., 2021a) to predict the field data for the next
time step. CAPE can be combined with any existing autoregressive neural PDE solvers. Figure 1
illustrates the proposed CAPE framework. We performed extensive experiments using various PDEs

∗E-mail:Makoto.Takamoto@neclab.eu

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

N0
Time

S
pace

Autoregressive PDE Solver CAPE𝝀

Neural base model

Step 1 Step 2

Figure 1: The standard autoregressive approach (left) and the proposed CAPE approach (right) which
consists of two interdependent steps.

with a large number of different parameters evaluating the effectiveness and efficiency of the proposed
method in comparison with popular state-of-the-art methods.

2 CAPE: A Framework for Neural PDE Solvers

Problem Definition We consider PDEs: ∂tu = F (t, x, u, ∂xu, ...) whose solution is described as
a temporal sequence of field data

{
uk
}
k=0,...,N

:= u0, u1, ..., uN where uk is the field data at time
step tk, that is, the state of the physical system governed by the PDE under consideration at time
tk discretized using ∆t = T/N . Each u ∈ X ⊆c×x1,...,xD represents the field tensor data with c
the number of physical variables such as density and velocity, and xi the spatial dimensions of the
i-th coordinate. We will often refer to c as the channel dimension. We aim to emulate numerical
simulators of PDEs which iteratively map M : X → X from uk to uk+1. The emulator (or surrogate
model) is a learnable function modeled as a neural network NN with weights θ. We refer to the
parameters of a neural network as weights to avoid a conflict in terminology with the parameters of
PDEs. In the following, we denote the emulator’s prediction at time index k as ũk. Auto-regressive
neural networks predict the next time step’s field data based on a sequence of field data tensors of
length ℓ ũk+1 = NN(ũk−ℓ+1, ..., ũk; θ). Given the length of the input sequence N ∈ N, and an initial
input sequence

(
u0, ..., uℓ−1

)
=
(
ũ0, ..., ũℓ−1

)
of length ℓ < N , the ML model auto-regressively

generates the remaining sequence
(
ũℓ, ..., ũN

)
. The training loss is typically the normalised mean-

squared error (nMSE) (Takamoto et al., 2022) between the predicted and the true field data tensors
Since we are training an auto-regressive neural network, the gradients of the above loss can be
backpropagated in time in various ways. We discuss this in the following sections. Figure 1(left)
illustrates this auto-regressive approach to solving PDEs. In the vast majority of experimental setups,
the assumption is made that ℓ > 1, and, therefore, an initial input sequence of length ℓ is available to
the model; in practice, this would require a numerical simulation to be run for ℓ− 1-time steps from
the initial condition and for each PDE parameter λ. The main idea of CAPE is to learn to generate
these sequences based on the current field data and parameter values λ and use those as input to an
off-the-shelf neural surrogate model such as an FNO (Li et al., 2021a) or U-Net (Ronneberger et al.,
2015) to perform a complex interpolation.

Combining Neural PDE Solvers with the CAPE Module The proposed approach is motivated
by the need for neural PDE solvers to generalize to PDE parameters unseen during training. We
propose CAPE, a novel neural network architecture that takes the prior state of the system ũk

and PDE parameters λ as input and predicts the ℓ-intermediate future states
{
ûk→k+i
cape

}
i=1,...,ℓ

=

CAPE(uk, λ; θCAPE)The output of CAPE is then used by the BASE network. The overall structure is
provided in Figure 1(right). The intuition behind this approach is that the intermediate future states
capture information about the PDE parameters’ impact by attending to the results of the convolutional
operations. While we do not change the architecture of the base neural PDE solvers, we propose to
use them to predict, given the past temporal states and the intermediate future states, the state for the
next time step. This is contrary to the typical use of neural PDE solvers. The base network is trained
jointly with the CAPE module. As shown in section 3, this choice improves the prediction capability
of the BASE network.

During training, the output of CAPE is regularized by the additional loss term

Lcape(θCAPE) =

N∑
k=ℓ

min(ℓ,N−k)∑
i=1

nMSE
(
ûk→k+i
cape , uk+i

)
, (1)

which forces the CAPE module to predict a temporal sequence of future field data
{
uk+i

}
i=1,...,ℓ

.

2

M
L

P

Conv

1x1 Conv
Channel
attention

d channels

kernels

d attention weights

c channels

Figure 2: The CAPE module for one type of convolution (residual connections are omitted).

Finally, the intermediate sequence
{
ûk→k+i
cape

}
i=1,...,ℓ

is concatenated with uk, the field data at
time tk, and given to the base network to make the final prediction. In summary, the CAPE
module transforms the input variables

{
uk, λ

}
into temporal-sequential intermediate field data

{uk, ûk→k+1
cape , . . . , ûk→k+ℓ

cape } which is then interpolated by the base neural network. Before we in-
troduce the inductive bias of the CAPE module, we motivate the general approach from a classical
numerical simulation perspective.

Channel-Attention-Based Parameter Embedding (CAPE Module) CAPE computes 3 different
d-dimensional channel attention masks aα ∈d, α = 1, 2, 3 from the parameters of the PDE λ using a
2-layer MLP: aα = W2,ασ(W1,αλ), where d is the channel dimension in the feature space and σ is
the GeLU activation function (Hendrycks & Gimpel, 2016). Wα = (W1,α ,W2,α) are the weights
associated with three operators: a 1×1-convolution (g1), a depth-wise convolution (g2), and a spectral
convolution (Li et al., 2021a) (g3), that are used to compute the tensor representations zkα ∈d×nx... as
zkα = gα(u

k,Wα). The tensors are then multiplied by the attention

vkα = akα ⊙1 z
k
α (2)

using the Hadamard operator (⊙1) over the first dimension (the channel dimension) which is equiv-
alent to the broadcast operation of ML programming languages. A similar mechanism has been
proposed for visual tasks, called the squeeze-and-excitation networks (Hu et al., 2018) which enhances
useful channels of the feature vector of convolutional networks through an attention mechanism. The
feature vkα ∈d×nx..., α = 1, , 2, 3 are combined to form an intermediate feature yk ∈c×ℓ×nx... as

yk = h1×1,d→c×ℓ

(
σ

(
h1×1,c→d(u

k) +
∑
α

vkα

))
(3)

where h1×1,∗ are 1× 1 convolutions that adjust the number of dimensions, in particular h1×1,c→d :
c× nx · · · → d× nx . . . , while h1×1,d→c×ℓ : d× nx · · · → c× ℓ× nx Finally, the sequence of
predictions is computed{

uk→k+i
cape

}
i=1,...,ℓ

= (uk + LayerNorm(yki))i=1,...,ℓ (4)

where yki is the i-th element of the data tensor yk, selected from the second dimension . For simplicity,
we omitted the batch dimension. Figure 2 illustrates the architecture of the CAPE module.

3 Experiments

We used datasets provided by PDEBench (Takamoto et al., 2022) a benchmark for SciML from which
we selected the following PDEs: 1D Advection equation, 1D Burgers equation, 2D Compressible
Navier-Stokes equations (2D NS). For 1-dimensional PDEs, we used N = 9000 training instances
and 1000 test instances for each PDE parameter with resolution 128. For 2-dimensional NS equations,
we used N = 900 training instances and 100 test instances for each PDE parameter with spatial
resolution 64 × 64. The training was performed on GeForce RTX 2080 GPU for 1D PDEs and
GeForce GTX 3090 for 2D NS equations.

Experiment Setup. We evaluated the neural models U-Net (Ronneberger et al., 2015) and FNO
(Li et al., 2021a) with some datasets provided by PDEBench (Takamoto et al., 2022) for various
parameters for the 1D Advection equation, 1D Burgers equation, and 2D compressible Navier-Stokes
equations. We trained each of the neural models (1) Base: without any changes (vanilla model), (2)

3

FNO Unet
Model

0.0

0.5

1.0

nM
SE

Advection

Base PINO 2-step CAPE

FNO Unet
Model

0.0

0.5

1.0

nM
SE

Burgers

Base PINO 2-step CAPE

FNO Unet
Model

0.6

0.8

1.0

1.2

nM
SE

2D NS

Base 2-step CAPE

Figure 3: Plots of the normalized MSE (smaller is better) with an error bar for Advection eq. (Left),
Burgers eq. (Middle), and 2D Compressible NS equations (Right). The smaller, the better.

0.0 0.5 1.00

1

2

3
1D Advection, t=2.0

initial
True
base
CAPE
CAPE module

0.0 0.5 1.0
1.0

0.5

0.0

0.5
1D Burgers, t=1.0

initial
True
base
CAPE
CAPE module

True Base CAPE CAPE module

Figure 4: Visualization of the results: Advection eq. at the final time-step (t = 2.0) (Left), Burgers eq.
at tk = 20(t = 1.0) (2nd-left) at the final time-step, and Vx of 2D NS equations at tk = 5(t = 0.25)
(Right). Here “CAPE module" is the direct output from CAPE module only.

PINO: with a PINO loss (Li et al., 2021b), (3) 2-step: with the field data for the current and previous
time-steps as input (uk, uk−1), and (4) CAPE: with the CAPE module. Other than case (3), we only
provided field data for one time step to the models and, therefore, the models cannot obtain PDE
parameters’ information from the given data. Since the solutions of each PDE are not normalized, we
measure the normalized MSE (nMSE). The optimization was performed with Adam (Kingma & Ba)
for 100 epochs. The learning rate was divided by 2.0 every 20 epochs. For a fair comparison, we
made the model size of the different methods as similar as possible.

Varying the parameter values. Figure 3 shows bar plots comparing the BASE models with and
without CAPE module, the models with PINO loss, and the models with the 2-steps as input. The
CAPE module results in the lowest error in all cases. In particular, the CAPE module leads to an
impressible error reduction ranging from 20 % (2D NS equation) to 95 % (1D Advection). We partly
attribute this to the BASE network’s ability to capture physical dynamics from the PDE parameter-
dependent data provided by the CAPE module. The vanilla FNO is a state-of-the-art model and is
superior to the U-net as a BASE model . Interestingly, the CAPE module provides either comparable
or a little better results than the case with 2-step information. This indicates that the CAPE module
succeeded in providing equivalent and even more useful information to the BASE network.

Qualitative analysis of the CAPE module. In Figure 4 we plot some representative outputs of
the vanilla FNO, the CAPE module, and the overall CAPE model, and compare them with the
true solutions. Interestingly, we can see that the BASE network often interpolates a higher noise
approximation of the CAPE module into the typical shape (style) of the final solution.

4 Conclusion

This paper proposed a channel-attention-based parameter embedding (CAPE) module which allows
any data-driven SciML models to incorporate PDE parameters. We also propose a simple but effective
curriculum training strategy that allows us to bridge teacher-forcing and auto-regressive learning.
We performed an extensive set of experiments and showed the effectiveness and efficiency of our
method from various aspects: generalization of seen/unseen PDE parameters during training. For the
moment, our method is limited to hydrodynamic-type field equations with structured meshes, and
only PDE parameters can be taken into account.

4

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Please see the last part of Section

4.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We

believe that our work does not have any potential negative societal impacts as it does
not contain confidential or private data.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We only used data of general physical systems with no potential ethical
issues or severe environmental damage.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We provided
our anonymous Github URL.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We tried to include them as much as possible.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Please see Figure 3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] They are provided in the first part
of Section 3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We adopted the

implementation of the baseline models with some modifications, with proper citation
and credits to the authors, as well as existing software packages

(b) Did you mention the license of the assets? [Yes] All the appropriate licenses are
provided or mentioned in our repository.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
All the code and a part of the data are included in the code repository

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We used the data generated by numerical simulations which is
accessible to the public, and we include citations to the original authors.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We do not include any personal information
or offensive content in our codes.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

References
Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven

discretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

5

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64(2):525–545, 2019.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural pde solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 2019.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with artificial neural
networks. European Journal of Applied Mathematics, 32(3):421–435, 2021.

Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer
graphics forum, volume 38, pp. 59–70. Wiley Online Library, 2019.

Diederik P. Kingma and Jimmy Ba. In ICLR (Poster).

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
International Conference on Learning Representations (ICLR), 2021a.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021b.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):1–10, 2018.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations.
The Journal of Machine Learning Research, 19(1):932–955, 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation, May 2015.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Makoto Takamoto, Timothy Pradita, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. PDEBench: A diverse and comprehensive benchmark for scien-
tific machine learning, 2022. URL https://darus.uni-stuttgart.de/privateurl.xhtml?
token=1be27526-348a-40ed-9fd0-c62f588efc01.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1457–1466, 2020.

6

https://darus.uni-stuttgart.de/privateurl.xhtml?token=1be27526-348a-40ed-9fd0-c62f588efc01
https://darus.uni-stuttgart.de/privateurl.xhtml?token=1be27526-348a-40ed-9fd0-c62f588efc01

	Introduction
	Cape: A Framework for Neural PDE Solvers
	Experiments
	Conclusion

