
CaloMan: Fast generation of calorimeter showers
with density estimation on learned manifolds

Jesse C. Cresswell
Layer 6 AI

jesse@layer6.ai

Brendan Leigh Ross
Layer 6 AI

brendan@layer6.ai

Gabriel Loaiza-Ganem
Layer 6 AI

gabriel@layer6.ai

Humberto Reyes-González
University of Genoa & INFN

hreyes@ge.infn.it

Marco Letizia
University Of Genoa & INFN

marco.letizia@edu.unige.it

Anthony L. Caterini
Layer 6 AI

anthony@layer6.ai

Abstract

Precision measurements and new physics searches at the Large Hadron Collider
require efficient simulations of particle propagation and interactions within the
detectors. The most computationally expensive simulations involve calorimeter
showers. Advances in deep generative modelling – particularly in the realm of high-
dimensional data – have opened the possibility of generating realistic calorimeter
showers orders of magnitude more quickly than physics-based simulation. How-
ever, the high-dimensional representation of showers belies the relative simplicity
and structure of the underlying physical laws. This phenomenon is yet another
example of the manifold hypothesis from machine learning, which states that high-
dimensional data is supported on low-dimensional manifolds. We thus propose
modelling calorimeter showers first by learning their manifold structure, and then
estimating the density of data across this manifold. Learning manifold structure
reduces the dimensionality of the data, which enables fast training and generation
when compared with competing methods.

1 Introduction

The accurate simulation of particle detectors is a primary component of the high energy physics
program. It allows us to map the data collected by an experiment to a theoretical description of
the fundamental interactions of nature. Experimental collaborations at the Large Hadron Collider
(LHC) rely on Monte Carlo simulations of physics from first-principles to emulate the passage of
billions of particles through the several stages of the LHC detectors. A particularly involved step of
the simulation pipeline is the generation of calorimeter showers. An incident particle interacts with
an active material in the calorimeter, producing a shower of secondary particles. In turn, the shower
deposits its energy into an array of scintillators which measure the energy distribution.

Currently, LHC calorimeter shower generation is done with Geant4 [2–4], the state-of-the-art simula-
tor of the passage of particles through matter. However, these simulations are very time consuming,
taking up to tens of minutes per event. As the LHC enters its High Luminosity era, Monte Carlo
generation will only become more complex and computationally expensive, emphasizing the need for
alternative approaches enabling fast simulation.

Recent advances in the field of deep generative modelling present a solution: train a surrogate model
designed to emulate calorimeter showers, using data on incident particles and their resulting showers
collected from experiment or expensive simulation. Deep generative models (DGMs) aim to learn the
distribution of their training data, and can generate new data by sampling from the learned distribution.

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



In the context of calorimeter showers, various types of generative models have been used including
generative adversarial networks (GANs) [20] by CaloGan [32], normalizing flows (NFs) [34, 11]
by CaloFlow [25, 26], and score-based generative models (SGMs) [39] by CaloScore [31]. Each
approach has aimed to improve on various aspects of the problem. GANs allow fast simulation, but
not inference (the ability to evaluate the likelihood of a datapoint according to the learned distribution).
SGMs provide excellent quality generated samples, but are slow to train and sample from. NFs allow
inference and are trained by the seemingly principled approach of maximum-likelihood estimation.

The main drawback of NFs is that they model a density that has the same dimensionality as the
input data. For calorimeter showers, the data is presented as the energy deposited per voxel of the
calorimeter which can be thought of as a vector in Rn, where n is the number of voxels. Typically,
n is in the hundreds or thousands, so the representation of the data is high-dimensional. This is in
contrast to the relatively simple and highly structured underlying physical processes. For example, in
an electromagnetic calorimeter with an incident photon, most of the interactions can be described
by quantum electrodynamics [17]. The true distribution of electromagnetic showers is unknown,
but its dimensionality is likely to be much smaller than n. In the machine learning context, this is
an example of the manifold hypothesis, which states that high-dimensional data clusters around a
low-dimensional embedded submanifold in the ambient space [5, 33].

Figure 1: A low-dimensional density on a
manifold (left), and a full-dimensional density
model undergoing manifold overfitting (right).
Although the full-dimensional model concen-
trates around the manifold, it distributes the
density incorrectly along the manifold.

Maximum-likelihood models like NFs are built on
the assumption that the underlying distribution pos-
sesses a full-dimensional probability density p(x) in
the data space. When the data is confined to a low-
dimensional manifold, this assumption is false: the
data manifold is a subset of measure zero, over which
no continuous density can be integrated to obtain
non-zero probabilities. This mismatch between the
model and the data leads to a phenomenon known as
manifold overfitting [28], in which the model can
maximize likelihood by concentrating probability
density around the manifold while incorrectly dis-
tributing the density along the manifold. The re-
sulting phenomenon is illustrated in Fig. 1. As a
result, maximum-likelihood is an ill-posed objective
for manifold-supported data.

A common method when training NFs and other DGMs is to add full-dimensional Gaussian noise to
the training data [45, 44, 25]. Adding noise can avoid the problem of manifold overfitting, but at the
cost of no longer modelling the true distribution of the data, and not recovering the manifold structure
[23] which could contain interesting physics.

In this work we propose to better model calorimeter showers by first learning their manifold structure
and then estimating the density within [28]. This technique allows us to avoid manifold overfitting,
while the dimensionality reduction step increases the efficiency of training and shower generation.

2 Method

2.1 Learning the Manifold of Calorimeter Showers

While it would be interesting to understand the exact distribution of showers from first-principles,
for practical applications it suffices to learn the manifold M and probability density pM(x) from
data. To do so, we follow the general two-step procedure outlined by Loaiza-Ganem et al. [28]. The
first step is to learn the manifold using a generalized autoencoder: any model that can construct
low-dimensional latent encodings z = ϕ(x) of high-dimensional data x, and reconstruct the original
data via an inverse transformation x = ψ(z). The learned low-dimensional encodings z act as
coordinates on the data manifold. The class of generalized autoencoders includes the autoencoder
[38], variational autoencoder [24], Wasserstein autoencoder [41], bidirectional GAN [12, 14], and
adversarial variational Bayes [30], among others.

The second step is to perform density estimation in the z coordinates, obtaining low-dimensional
densities p(z). Any DGM that explicitly constructs p(z) can be used, including NFs, energy based

2



models [13], auto-regressive models [43], score-based models [40], and diffusion models [22].
Variational autoencoders and adversarial variational Bayes are also suitable as density estimators.

By capturing a probability density within the manifold, the two-step procedure evades the dimen-
sionality mismatch in maximum-likelihood estimation. If required, probability densities in the data
space can be computed using a change of metric from the low-dimensional coordinates into the
high-dimensional space [19, 8, 36]:

pM(x) = p(z) det
(
Jψ(z)

TJψ(z)
)− 1

2 , (1)

where Jψ(z) is the Jacobian of ψ evaluated at z = ϕ(x). Since the computation of Jacobians can be
expensive, we emphasize that maximizing p(z) directly is sufficient for training. In addition to being
more mathematically principled, two-step models are highly performant: stable diffusion [35] is one
example in which a diffusion model is trained on the data manifold learned by an autoencoder, and is
capable of surprisingly photorealistic image generation.

Calorimeter shower simulation requires a model that can simulate showers conditional on incident
energies. We assume the manifold contains showers x corresponding to all possible incident energies
Einc and aim to model the conditional density pM(x | Einc). The generalized autoencoder only needs
to map showers between the data space and latent space, which does not require knowledge of Einc,
hence we only add conditioning to the density estimator. When Einc information is provided to the
generalized autoencoder it can more easily cluster the shower data, leading to a segmented latent
representation that may not generalize to unseen Einc.

2.2 Intrinsic Dimension Estimation

In most examples of generalized autoencoders the dimensionality d of the latent representation is not
learned, but is specified as a hyperparameter of the method. If d is not known a priori, it could be set
empirically by trying many values and selecting the one with optimal validation performance, but
training many models is computationally expensive. Instead, we employ a statistical estimator of
the intrinsic dimension, several of which were reviewed in [33] and used to provide evidence for the
manifold hypothesis. Here we select the Levina-Bickel estimator [27] with the MacKay-Ghahramani
correction [29] because it is efficient to compute, and correlates well with synthetic datasets of known
dimensionality [33]. The estimator is

d̂k =

 1

n(k − 1)

n∑
i=1

k−1∑
j=1

log
Tk(xi)

Tj(xi)

−1

, (2)

where Tk(xi) is the Euclidean distance between datapoint xi and its kth nearest neighbour in the
dataset {xi}ni=1. The hyperparameter k sets the scale at which the manifold is probed, with smaller
values giving a more close up view. In the following we estimate d̂k on the training data, then use it
to specify the generalized autoencoder architecture.

3 Experiments

3.1 Dataset

As a proof of concept, we model the photon dataset provided by the Fast Calorimeter Simulation
Challenge 2022 [18]. The training and test datasets, each containing 121,000 electromagnetic
calorimeter showers simulated by Geant4, display a cylindrical geometry divided into five layers of
bins in polar coordinates, with 368 voxels of deposited energies. The incident photons are parallel
to the z-axis of the calorimeter, and have energies ranging from 256 MeV to over 4 TeV, increasing
in powers of two, with each level represented by 10,000 samples, except at higher energies where
there are fewer. We perform additional preprocessing to the dataset to facilitate training, similar to
[25] and [31]. Due to noise, the total deposited energy Edep can be greater than the incident energy
Einc, with the largest ratio Edep/Einc in the training set as rmax = 3.1. Each voxel of each shower
is rescaled by rmaxEinc to ensure voxels are in [0, 1]. We append Edep as an additional feature, and
linearly scale incident energies into the range [0, 1]. The training dataset is split 80/20 for validation.

3



Figure 3: Average deposited energy per voxel for the test dataset (left), and generated samples (right).
The samples were conditionally generated using the distribution of energies from the test set.

3.2 Intrinsic Dimension Estimates

Figure 2: The estimated intrinsic dimen-
sion of the photon training dataset as a
function of the hyperparameter k.

We apply the dimension estimator Eq. (2) to the photon
training dataset before and after preprocessing, with results
shown in Fig. 2. Other works [25, 31] transform voxels
to logit space which has a large effect on the estimated di-
mension since distances between datapoints are stretched.
The logit transformation may have had empirical benefits
in these prior works in part because it increased the “ef-
fective” intrinsic dimension and thereby reduced manifold
overfitting in models that had mismatched dimensional-
ity. Our model does not have this issue so we do not use
the logit transformation. At very small k the estimator is
biased to overestimate [27, 29]. Larger k means more dis-
tant neighbours are considered for each point, effectively
looking at longer length scales which can smooth out noise
but also miss small (compact) dimensions. This intuition
explains the decreasing nature of d̂k with k. Based on the value at k = 10 which has provided an
accurate estimate in prior work [33, 6], we use the dimension d̂10 = 20 for our experiments.

3.3 Manifold Learning and Density Estimation

Table 1: Histogram χ2 separa-
tion powers in high-level features.
Lower is better. L denotes layer.
CE is the center of energy.

FEATURE χ2 POWER

Edep/Einc 0.0535
Edep, L0 0.0540
Edep, L1 0.0304
Edep, L2 0.0243
Edep, L3 0.0045
Edep, L4 0.0009

CE in η, L1 0.0376
CE in η, L2 0.0512
CE in ϕ, L1 0.0145
CE in ϕ, L2 0.0391

Width in η, L1 0.1548
Width in η, L2 0.0538
Width in ϕ, L1 0.1080
Width in ϕ, L2 0.0489

We modelled showers with a VAE as our generalized autoen-
coder and a conditional NF for density estimation on the learned
manifold, using the code of Loaiza-Ganem et al. [28]. The
VAE’s encoder and decoder architectures were multi-layer per-
ceptrons with 3 hidden layers of 512 units. The NF, imple-
mented with the code of Durkan et al. [16], consisted of a
4-layer rational-quadratic neural spline flow [15] and a 3-block
residual network [21] at each layer. The output of each residual
block was combined with the conditioning input using a gated
linear unit [10]. The VAE and NF were each trained for 200
epochs for a total runtime of 110 minutes on a Titan V GPU,
requiring only 1 GB of memory. In comparison, CaloScore [31]
used 16 A100 GPUs and trained for 5 times as many epochs.

In Fig. 3 we show the average deposited energy per voxel for
the test dataset, and for conditional samples from our model
using the same incident energy distribution as the test set. The
rotational symmetry of layers 1 and 2 was learned well, but our
model allocated too much energy to layer 0. Conditioning the
generalized autoencoder on incident energies could improve this.

In Table 1 we compare our model’s samples to the test set using histograms of high-level features
as described in the Challenge [18]. For each feature the χ2 separation power between histograms
is computed, with lower numbers indicating the model matching the true distribution. Deposited
energies and the centers of energy are well-learned, with some improvement required for widths. Four
corresponding histograms are shown in Fig. 4. Using the architecture and training details provided in
[25], we trained a binary classifier to distinguish real and generated showers which achieved only

4



Figure 4: Histograms of high-level features comparing generated samples to the test set.

0.78 AUC. An AUC lower than 1.0 shows that many generated showers are indistinguishable from
real ones. By comparison, CaloScore [31] reported 0.98 AUC.

Table 2: Sample generation times
BATCH
SIZE

NUMBER OF
SHOWERS

TIME PER
SHOWER (ms)

1,000 1,000 0.0598
1,000 100,000 0.0844

10,000 10,000 0.0265
10,000 100,000 0.0246
50,000 50,000 0.0216
50,000 100,000 0.0201

Our method also demonstrates a significant speedup in genera-
tion time compared to others. In Table 2 we show the amortized
time to generate each sample for various batch sizes and num-
bers of samples generated. We include both the runtime of
the model, and overhead to undo preprocessing on the samples
which is required to produce showers in their original format.
For large batch sizes, which still comfortably fit on a single
Titan V GPU, our generation time is as low as 0.02 ms per
shower. In comparison, CaloScore [31] reported a sampling
time of 40 ms per shower on the same dataset, while CaloFlow II’s best settings (on a similar dataset)
required 0.08 ms per sample [26]. The Geant4 simulation times increase with incident energy, and
range from 100 ms to 3 s [1].

4 Discussion

In this work we investigated deep generative models for generating calorimeter showers that learn
a low-dimensional manifold structure and estimate densities on it. While the calorimeter data was
represented in 368-dimensional space, we found the intrinsic dimension of the shower manifold to
be approximately 20, and showed that it is possible to accurately learn the data’s density in so few
dimensions. Compared to previous approaches, our use of dimension reduction led to lightweight
models, significant speedups in training and sample generation, and good performance due to the
avoidance of manifold overfitting [28]. While this work is preliminary, we expect that further
improvements are possible as the methods are scaled up.

For calorimeter shower simulation, past work [32, 25, 1, 31] has focused solely on creating fast and
accurate density models, and has achieved these goals to varying extents. However, past models
do not inform us about the nature of the manifold supporting the data distribution, which could
reveal interesting physics. Furthermore, modelling mismatches could impose fundamental barriers to
accurate simulation. Consider the topology of the learned distribution - normalizing flows learn a
diffeomorphism that acts on a simple prior distribution and hence will be unable to learn topologically
non-trivial data manifolds [9]. In contrast, learning the manifold implicitly [37] can enrich the class
of topologies that can be modelled without prior knowledge or additional assumptions. We expect that
models which can better incorporate aspects like dimensionality, topology, geometry, compactness,
and connectedness will not only perform better, but will provide more insight into the physical
processes at play, especially when trained on experimental rather than simulated data.

Broader Impact While generative models certainly have far-reaching societal implications, for
instance when used maliciously to generate images of humans [7], or new chemical structures which
could be weaponized [42], we do not foresee negative societal outcomes from applying them to
calorimeter showers. It should be acknowledged that the utility of surrogate models is limited by
the quality of data they are trained on. In this setting, our method relies on accurate simulations of
calorimeter showers from Geant4. Our method is not meant to replace physics-based simulation, but
complement it by addressing the growing concern of computational cost.

5



Acknowledgments and Disclosure of Funding

M.L. acknowledges the financial support of the European Research Council (grant SLING 819789).

References
[1] G. Aad, A. Kupco, J. Chan, M. A. Principe Martin, P. A. Delsart, T. Dreyer, Y. Wang, K. Jakobs, A. M.

Rodriguez Vera, S. Shaw, et al. AtlFast3: the next generation of fast simulation in ATLAS. Technical
report, ATLAS-SIMU-2018-04-003, 2021.

[2] S. Agostinelli et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303, 2003.
ISSN 0168-9002. doi: https://doi.org/10.1016/S0168-9002(03)01368-8.

[3] J. Allison et al. Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1):
270–278, 2006. doi: 10.1109/TNS.2006.869826.

[4] J. Allison et al. Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835:186–225, 2016. ISSN
0168-9002. doi: https://doi.org/10.1016/j.nima.2016.06.125.

[5] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[6] B. C. A. Brown, A. L. Caterini, B. L. Ross, J. C. Cresswell, and G. Loaiza-Ganem. The union of manifolds
hypothesis and its implications for deep generative modelling. arXiv:2207.02862, 2022.

[7] M. Brundage, S. Avin, J. Clark, H. Toner, P. Eckersley, B. Garfinkel, A. Dafoe, P. Scharre, T. Zeitzoff,
B. Filar, H. Anderson, H. Roff, G. C. Allen, J. Steinhardt, C. Flynn, S. O. hÉigeartaigh, S. Beard, H. Belfield,
S. Farquhar, C. Lyle, R. Crootof, O. Evans, M. Page, J. Bryson, R. Yampolskiy, and D. Amodei. The
malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv:1802.07228, 2018.

[8] A. L. Caterini, G. Loaiza-Ganem, G. Pleiss, and J. P. Cunningham. Rectangular flows for manifold learning.
In Advances in Neural Information Processing Systems, volume 34, 2021.

[9] R. Cornish, A. Caterini, G. Deligiannidis, and A. Doucet. Relaxing bijectivity constraints with continuously
indexed normalising flows. In Proceedings of the 37th International Conference on Machine Learning,
volume 119, pages 2133–2143, 2020.

[10] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated convolutional networks.
In International Conference on Machine Learning, pages 933–941. PMLR, 2017.

[11] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. ICLR, 2017.

[12] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning. ICLR, 2017.

[13] Y. Du and I. Mordatch. Implicit generation and modeling with energy based models. Advances in Neural
Information Processing Systems, 32:3608–3618, 2019.

[14] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville. Adversarially
learned inference. ICLR, 2017.

[15] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural spline flows. Advances in Neural
Information Processing Systems, 32, 2019.

[16] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. nflows: normalizing flows in PyTorch, Nov. 2020.
URL https://doi.org/10.5281/zenodo.4296287.

[17] C. W. Fabjan and F. Gianotti. Calorimetry for particle physics. Rev. Mod. Phys., 75:1243–1286, Oct 2003.
doi: 10.1103/RevModPhys.75.1243.

[18] M. Faucci Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih, and A. Zaborowska.
Fast Calorimeter Simulation Challenge 2022, 2022. URL https://calochallenge.github.io/
homepage/.

[19] M. C. Gemici, D. Rezende, and S. Mohamed. Normalizing Flows on Riemannian Manifolds.
arXiv:1611.02304, 2016.

6

https://doi.org/10.5281/zenodo.4296287
https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/


[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. Advances in Neural Information Processing Systems, 27, 2014.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[22] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020.

[23] C. Horvat and J.-P. Pfister. Density estimation on low-dimensional manifolds: an inflation-deflation
approach. arXiv preprint arXiv:2105.12152, 2021.

[24] D. P. Kingma and M. Welling. Auto-encoding Variational Bayes. ICLR, 2014.

[25] C. Krause and D. Shih. CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing
Flows. arXiv:2106.05285, 2021.

[26] C. Krause and D. Shih. CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers
with Normalizing Flows. arXiv preprint arXiv:2110.11377, 2021.

[27] E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. In Advances in Neural
Information Processing Systems, volume 17. MIT Press, 2004.

[28] G. Loaiza-Ganem, B. L. Ross, J. C. Cresswell, and A. L. Caterini. Diagnosing and Fixing Manifold
Overfitting in Deep Generative Models. Transactions on Machine Learning Research, 2022.

[29] D. J. MacKay and Z. Ghahramani. Comments on ’Maximum Likelihood Estimation of Intrinsic Dimension’
by E. Levina and P. Bickel (2004). The Inference Group Website, Cavendish Laboratory, Cambridge
University, 2005.

[30] L. Mescheder, S. Nowozin, and A. Geiger. Adversarial Variational Bayes: Unifying variational autoen-
coders and generative adversarial networks. In International Conference on Machine Learning, pages
2391–2400. PMLR, 2017.

[31] V. Mikuni and B. Nachman. Score-based Generative Models for Calorimeter Shower Simulation. arXiv
preprint arXiv:2206.11898, 2022.

[32] M. Paganini, L. de Oliveira, and B. Nachman. CaloGAN: Simulating 3D high energy particle showers in
multilayer electromagnetic calorimeters with generative adversarial networks. Phys. Rev. D, 97:014021, Jan
2018. doi: 10.1103/PhysRevD.97.014021. URL https://link.aps.org/doi/10.1103/PhysRevD.
97.014021.

[33] P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein. The Intrinsic Dimension of Images and
Its Impact on Learning. In International Conference on Learning Representations, 2021.

[34] D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International Conference
on Machine Learning, pages 1530–1538. PMLR, 2015.

[35] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-Resolution Image Synthesis With
Latent Diffusion Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, June 2022.

[36] B. L. Ross and J. C. Cresswell. Tractable Density Estimation on Learned Manifolds with Conformal
Embedding Flows. In Advances in Neural Information Processing Systems, volume 34, 2021.

[37] B. L. Ross, G. Loaiza-Ganem, A. L. Caterini, and J. C. Cresswell. Neural implicit manifold learning for
topology-aware generative modelling. ICML 2022 Workshop on Topology, Algebra, and Geometry in
Machine Learning, 2022.

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation.
Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[39] Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution. In Advances
in Neural Information Processing Systems, volume 32, 2019.

[40] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In Proceedings
of the 33rd Annual Conference on Neural Information Processing Systems, 2019.

[41] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf. Wasserstein auto-encoders. ICLR, 2018.

7

https://link.aps.org/doi/10.1103/PhysRevD.97.014021
https://link.aps.org/doi/10.1103/PhysRevD.97.014021


[42] F. Urbina, F. Lentzos, C. Invernizzi, and S. Ekins. Dual use of artificial-intelligence-powered drug discovery.
Nature Machine Intelligence, 4(3):189–191, 2022.

[43] B. Uria, I. Murray, and H. Larochelle. Rnade: The real-valued neural autoregressive density-estimator. In
In Advances in Neural Information Processing Systems 26 (NIPS 26), 2013.

[44] P. Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23(7):
1661–1674, 2011.

[45] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th international conference on Machine learning, pages
1096–1103, 2008.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [No]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] Data is available under the Creative

Commons CC0 waiver and we discussed and cited.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] Data is from a public challenge.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

8


	Introduction
	Method
	Learning the Manifold of Calorimeter Showers
	Intrinsic Dimension Estimation

	Experiments
	Dataset
	Intrinsic Dimension Estimates
	Manifold Learning and Density Estimation

	Discussion

