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Abstract

Score-based generative models have emerged as alternatives to generative adver-
sarial networks (GANs) and normalizing flows for tasks involving learning and
sampling from complex image distributions. In this work we investigate the ability
of these models to generate fields in two astrophysical contexts: dark matter mass
density fields from cosmological simulations and images of interstellar dust. We
examine the fidelity of the sampled cosmological fields relative to the true fields
using three different metrics, and identify potential issues to address. We demon-
strate a proof-of-concept application of the model trained on dust in denoising dust
images. To our knowledge, this is the first application of this class of models to the
interstellar medium.

1 Introduction

Generative models of astrophysical and cosmological fields can serve a multitude of purposes.
Cosmological simulations take several thousand CPU hours to run and can only be generated for a
limited set of parameters. There thus exists a demand for emulators: frameworks that can generate
summary statistics [Heitmann et al., 2009] or the underlying cosmological fields [Feder et al., 2020,
Jamieson et al., 2022] conditional on an input cosmological / astrophysical parameter set. This can
accelerate parameter inference approaches that require evaluating likelihoods at intermediate values.
In the context of observed astrophysical fields, statistical descriptions capable of capturing the non-
Gaussian nature of the interstellar medium would aid component separation problems encountered
in searches for the B-mode of the Cosmic Microwave Background [Remazeilles et al., 2018] and
statistical regularization for interstellar dust mapping [Green et al., 2019, Leike and Enßlin, 2019].

Score-based generative models [Song et al., 2020] have witnessed a surge in interest because of
findings that show that they surpass GANs in terms of image fidelity [Dhariwal and Nichol, 2021]
and their ability to produce realistic images conditional on text inputs [Saharia et al., 2022]. These
models learn the gradient of the probability density of the data to learn a generative model of the data
distribution. A subset of this class includes denoising diffusion probabilistic models (DDPMs) [Ho
et al., 2020]. Smith et al. [2022] used DDPMs to generate galaxy images. Rémy et al. [2020], Remy
et al. [2022] used the denoising score matching framework to learn the non-Gaussian component of a
prior on weak lensing convergence maps from simulations.

In this work we investigate two applications of DDPMs – one to simulation data products and one to
images of interstellar dust. We train models to generate dark matter density fields from a simulation
suite on grids of 64x64 and 128x128 pixels. We then compare five summary statistics between
samples from the trained models and the real simulation fields. While we currently generate these
fields unconditionally, this benchmarking is an important step toward using these models as emulators,
and generating fields conditional on an input parameter vector. We then turn our attention to the real
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sky, and train a model to generate square patches from an interstellar dust map. We use the trained
model as a denoising model and examine how well it can reconstruct the underlying image given a
noisy input.

2 DDPM Background

In this section, we briefly review the denoising diffusion probabilistic model formulation in Ho et al.
[2020]. A DDPM consists of a forward and a reverse diffusion process, over a fixed number of time
steps, T, where x0 is a draw from the image distribution and xT ∼ N (0, 1). The forward diffusion
process is defined according to a variance schedule {βt}. Thus q(xt|xt−1) = N (

√
1− βtxt−1, βtI)

and q(xt|x0) = N (
√
ᾱtx0, (1 − ᾱt)I), where ᾱt =

∏t
t′=1 1 − βt′ . The neural network ϵθ(xt, t)

parameterizes the reverse diffusion process: pθ(xt−1|xt) = N (µθ(xt, t), σ
2
t I) where µθ(xt, t) =

1√
1−βt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
and σ2

t = 1−ᾱt−1

1−ᾱt
βt. A simplified loss function is minimized where

Lt−1 = ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t))||2 with ϵ ∼ N (0, I). Thus for each batch a set of timesteps

t is uniformly sampled from t ∼ U [1...T ] to minimize Lt−1.

3 Generative Models for Dark Matter Density Fields

Dataset The CAMELS Multifield Dataset (CMD) [Villaescusa-Navarro et al., 2022] from the
Cosmology and Astrophysics with MachinE-Learning Simulations (CAMELS) dataset [Villaescusa-
Navarro et al., 2021] was used for this application. The CMD includes an ensemble of thirteen
two-dimensional physical fields for 1000 different simulation parameter vectors where each vector
consists of 2 cosmological and 4 astrophysical feedback parameters. Every unique parameter vector
has 15 samples and the full data set thus consists of 15000 samples of each physical field. We work
with the log (base 10) of the cold dark matter mass density field from the IllustrisTNG hydrodynamical
simulation at z = 0, at two grid sizes (64x64 and 128x128) binned down from the original 256x256.
Each side of an image corresponds to 25h−1 Mpc. For the 64x64 model, we use fields corresponding
to the first 60% of the parameters as our training data. We augment our fields with rotations and flips,
to yield 54000 (9000x6) train fields. For the 128x128 model, we use fields corresponding to the first
70% of the parameters as our training data. We augment our data with rotations, flips and translational
shifts (since the data has periodic boundary conditions). We thus have 252000 (10500x24) train fields.
We apply a minmax transform that scales the minimum and the maximum pixel intensity of the full
training set to [-1, 1].

Training Details We train two models, one at each resolution, for 60k iterations (batch updates). In
both cases, we use a forward diffusion process parameterized by a linear variance schedule lying in
the range [10−4, 2× 10−2], T=2000, a batch size of 40 images, and the Huber loss in place of the L2
loss with the Adam optimizer [Kingma and Ba, 2014]. We used a learning rate of 5× 10−4 for the
model at 64x64 and 2× 10−4 for the model at 128x128 and saved checkpoints every 2000 iterations,
to enable sampling from multiple models. For the 64x64 case, we train models with 3 different seeds.
We use code blocks and architecture from Hugging Face’s The Annotated Diffusion model [Rogge
and Rasul, 2022], https://github.com/lucidrains/denoising-diffusion-pytorch and
Ho et al. [2020]. The architecture we use is similar to that in Ho et al. [2020], and consists of a
U-Net [Ronneberger et al., 2015] with 4 down and up-sampling blocks consisting of 2 ResNet blocks
[Zagoruyko and Komodakis, 2016], group-normalization [Wu and He, 2018], and attention [Vaswani
et al., 2017, Shen et al., 2021]. We use the Weights and Biases framework [Biewald, 2020] for
our experiments. The code for experiments in this paper is available at the following repository:
https://github.com/nmudur/diffusion-models-astrophysical-fields-mlps.

Summary Statistics Four samples from the trained model at 128x128 are plotted in the top right
panel of Figure 1. We consider three summary statistics – the power spectrum, the normalized
pixel intensity histograms and the three Minkowski functionals in Figure 2 to gauge consistency
between the sampled fields and the true image distribution. Minkowski functionals [Schmalzing et al.,
1995, Schmalzing and Górski, 1998] are topological descriptors of fields sensitive to correlation
functions beyond the second order and can be used as metrics to gauge how similar the statistics of
the generated fields are to those of fields from the true distribution [e.g., Tamosiunas et al., 2021,
Régaldo-Saint Blancard et al., 2022]. They are computed as integrals over excursion sets with pixels
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Figure 1: Four log cold dark matter mass density fields from the training data (top left) and from the
sampled model (top right) at 128x128. Four samples of dust from the training data (bottom left) and
from the trained model (bottom right).
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Figure 2: Power spectra, normalized pixel histograms and Minkowski functionals for 100 draws from
the real fields and the trained models at 64x64 (left) and 128x128 (right). The envelopes in the power
spectra and the Minkowski functionals’ panels represent the standard deviation of the value of the
statistic in each bin. The height of the bars in the pixel histogram is the mean height of the histogram
bin and the error bar is the standard error over all 100 samples.

whose intensity is greater than a value g. In 2D, M0,M1,M2 reflect the number of pixels in
the excursion set (area), the length of its boundary (perimeter) and the number of holes. We use
QuantImPy [Boelens and Tchelepi, 2021] to compute these functionals.

The loss function used to train these models does not directly enforce the summary statistics of the
generated images to exactly match the summary statistics of the training distribution. Thus, while
the mean of the statistics of the generated samples across checkpoints typically lie within the one
standard deviation envelope of the power spectra and Minkowski functionals of the true distribution,
convergence in terms of the loss does not imply that the converged models are stationary with respect
to the distribution of the summary statistics of the generated images. We thus draw 100 samples
from each of the last 10 checkpoints of the trained diffusion models and from the real (train) dataset.
Since the variability across checkpoints is similar across all three seeds for the 64x64 models, we
train a single model for the 128x128 case and sample from its last 10 checkpoints. For the samples
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across all 10 checkpoints, the mean absolute fractional difference in the power spectrum is typically
around 10% (std. dev. 5% for 64x64) and 15% (std. dev. 10% for 128x128) and is higher at the
lowest and highest k−bins, which are most affected by cosmic variance and noise, respectively. For
both the 128x128 model and all 3 runs of the 64x64 model, at least one checkpoint with a mean (over
all bins) absolute fractional difference of less than 5% could be found. As in Mustafa et al. [2019]
and Tamosiunas et al. [2021] that use adherence to summary statistics as a model selection criterion,
we identify the checkpoints with the lowest absolute fractional error in the power spectrum and the
best agreement with the Minkowski functionals. The statistics plotted in Figure 2 correspond to these
models. For the 64x64 case, we plot the statistics for the worst of the three best-case models (one
for each seed). While the mean and the spread of the power spectra appear to be largely consistent
for these models, the Minkowski functionals are more sensitive to differences between the true and
the generated samples. We intend to explore whether these differences and the lack of convergence
to a distribution stable with respect to the summary statistics can be mitigated with different design
choices, or whether more fundamental changes to the method are required.

4 A Generative Model for Interstellar Medium Fields

Dataset and Training Details The dataset consists of 12482 images from the Schlegel-Finkbeiner-
Davis (SFD) [Schlegel et al., 1998] map of interstellar dust extinction inferred from emission at
100 microns. We restrict ourselves to images with extinction ESFD < 3. Each image is 128x128
and spans an area of (6.4◦)2 on the sky. The validation set consists of images lying in Galactic
longitude 0◦ < l < 42◦ and the test set (held out for future validation) consists of images lying
between 200◦ < l < 240◦. All other images (roughly 69%) belong to the train distribution. The train
images are augmented with rotations and flips, yielding 68048 images (8506x8). We apply a minmax
transform that scales the minimum and the maximum pixel intensity of each image to [-1, 1]. We peg
the transform to each image because images of interstellar dust span a larger dynamic range and pixel
intensities in two images are much more likely to be dissimilar than for the cosmic web. We train our
models for 42k iterations with a learning rate of 6× 10−5. All other training details are the same as
in Section 3. Four sampled images are plotted in the bottom right panel of Figure 1. For both the
generated cosmic web images and the dust images we see that the models are able to capture a rich
variety of structure.

Denoising Tests We select a filamentary field from the validation dataset, whose standard deviation
corresponds to roughly the 50th percentile of the standard deviation across all images in the validation
set. We add N (0, σ2) noise such that σ is 20% of the mean of the intensity in the image. The noisy
input is scaled to [-1, 1] and the timestep at which

√
1− ᾱt is closest to the corresponding scaled

sigma σtr is identified for each image. We then iteratively sample from pθ(xt−1|xt) from t = tσtr

to t = 0 to derive the denoised image. As a baseline, we find the corresponding Gaussian filter that
would reduce the RMSE in the low-signal portion on the bottom right of the image by the same factor
(3.3). Figure 3 plots the denoised images with the model and the baseline. The correlation of the
residual with filaments is significantly lower with the diffusion model than with the baseline.

5 Conclusions and Future Work

In this work, we investigated whether DDPMs are able to learn and sample from the image distribution
for two astrophysical fields — one from simulations and the other from real interstellar dust maps —
in a ‘physically meaningful’ way, gauged by two different yardsticks. In the case of models trained
to generate images of interstellar dust, the models are able to denoise highly filamentary images of
interstellar dust while recovering underlying structure better than a smoothing baseline. Approaches
such as Régaldo-Saint Blancard et al. [2022] involve learning generative models of interstellar dust
using the wavelet statistics of a single image, whereas our description learns a prior using multiple
images. The former approach can be useful in cases where limited training data is available while the
latter approach is more likely to account for diversity and multiple modes of the image distribution.
In the context of dark matter density fields from simulations, we examined three sets of summary
statistics of cosmological significance. The ability to generate images with the same statistics is an
important first step toward deploying these models as emulators. While DDPMs show promise in
terms of our ability to find models that generate samples that are consistent up to 10% in the power

4



Ground Truth Diffusion Model Denoised Residual Denoised

Noised Input Smoothed Residual Smoothed

0.02

0.04

0.06

0.08

0.10

0.12

0.02

0.04

0.06

0.08

0.10

0.12

0.010

0.005

0.000

0.005

0.010

0.02

0.04

0.06

0.08

0.10

0.12

0.02

0.04

0.06

0.08

0.10

0.12

0.010

0.005

0.000

0.005

0.010

Figure 3: Ground truth, noised input, denoised image and its residual (denoised - truth), smoothed
baseline and its residual (smoothed - truth).

spectrum, we intend to work on finding architectures or models with inductive biases that prioritize
convergence to distributions that are stationary with respect to these summary statistics.

6 Broader Impact

Several papers have examined and improved the performance of score-based generative models for
standard machine learning datasets using standardized metrics such as the Fréchet Inception Distance
[Heusel et al., 2017], demonstrated their ability to generate photo-realistic images conditional on text
inputs [Ramesh et al., 2022] and identified issues to work on, such as their slower sampling speed,
relative to GANs. This raises the question – how can these models help accelerate science? As a first
demonstration of the use of these models to generate fields from the interstellar medium, we hope that
this paper can motivate both potential use cases for these models in astrophysics and cosmology as
well as work on imbuing these models with physical inductive biases that make them more suitable for
applications where practitioners care about recovering specific summary statistics. While our focus
here has been on astrophysics, the questions we consider and the desire for high-fidelity generative
models capable of sampling distributions of images faster than simulations have wider applications
across the physical sciences [Kasim et al., 2021] — from the geophysical sciences to high energy
physics [Paganini et al., 2018].
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(b) Did you describe the limitations of your work? [Yes] One of the key limitations is the
observation that the cosmic web diffusion models fail to converge to a distribution that
is stationary with respect to the summary statistics we examine. We discuss this in
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this class of generative models can be applied in a diversity of contexts, our application
here does not entail any negative societal impacts.
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-
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Section 3: Training Details and Summary Statistics.

(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
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A Appendix

A.1 Experiments and Compute Time

The 64x64 model took 1.25h to train for 60k iterations while the 128x128 models took 13.5 hours to
train for the same number of iterations. We used an NVIDIA A100 for most experiments and runs.
We ran most experiments on the 64x64 model, since it took 1.25 hours to train for 60k iterations. The
cumulative compute time spent on experiments was around 5 days. Sampling 10 images from the
trained diffusion models took ∼ 40 seconds for the 64x64 model and ∼ 110 seconds for the 128x128
model on the A100. We gauged whether other hyperparameter choices were better by plotting the
summary statistics of samples from the generated model (as in Figure 2).
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• We tried the cosine learning schedule proposed in [Nichol and Dhariwal, 2021] and found
the linear schedule to work better, for the number of iterations we experimented with.

• We chose a lower learning rate for the dust images since we found this to be more stable.
• We also tried learning rates of [6× 10−5, 2× 10−4, 1× 10−3] for the 64x64 model and did

not find any of the other learning rates to improve performance.
• We examined the summary statistics for samples from the 64x64 runs described in Section

3 for the last 15 checkpoints and did not find significant differences in the quality of the
summary statistics.
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