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Abstract

Clouds play an important role in balancing the Earth’s energy budget. Research has
indicated a rise in global average temperatures will lead to thinning of stratocumulus
low clouds acting as a positive feedback on warming. Current state-of-the-art Earth
System Models do not resolve cloud physics appropriately due to spatial resolution
limitations, making it harder to model the cloud-climate feedback. In this study,
we propose to learn this feedback with a transformer. To better respect the spatial
structure of Earth, we transform the data to a spherical grid. Our resulting spherical
transformer called ClimFormer–based on Fourier Neural Operator mixing–trained
on climate simulations, is able to model this important energy exchange mechanism,
and performs strongly on an out-of-distribution evaluation on ERA5 data.

1 Introduction

The Earth mainly receives energy from the sun in the form of radiation. Clouds play a critical role in
modulating the transfer of radiation through the atmosphere. Cloud-climate feedbacks are important
drivers of atmospheric radiation changes and play a key role in variations of key climate prognostics
such as temperature, pressure, and precipitation. As clouds occur on scales smaller than typical
Earth System Model (ESM) spatial resolutions, they are typically represented by semi-empirical
parameterizations. Uncertainties these cloud processes and their representation are the dominant
source of inter-ESM uncertainty in the projected climate response to CO2 increases [25], limiting the
precision with which ESMs can be used to make long-term climate projections.

Even with the promise of more computation and the recently unveiled GPU accelerated climate
models [11], the physics of the cloud-climate processes are sometimes poorly understood. The advent
of Fourier Neural Operators (FNO) offers a promising alternative to learning complicated Partial
Differential Equations (PDE) by learning the mapping between functional spaces directly from data
[15]. It has shown great promise in learning operators for multi-scale systems including geophysical
turbulence [19, 3, 4]. In addition to FNO, Transformers [22] has revolutionized many domains of
applied machine learning research [12, 17]. At the core of the Transformer’s success is the mechanism
of attention, which makes this particular framework well suited to model long-range interactions
and teleconnections [7] for climate simulations. The concept of applying Transformers to model
weather and climate is not entirely novel. In the recent past, Temporal Fusion Transformers [16] have
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been used to model geophysical turbulence [4], seasonal climate forecasting [24], meteorological
prognostics such as wind-speed [23], and extreme weather[5]. Pathak et al. proposed FourCastNet, a
transformer that builds on Adaptive Fourier Neural Operator (AFNO) mixing [9], and applied it to
model global weather [21]. Bai et al. [1] proposed Rainformer for precipitation nowcasting, which
is based on an architecture that combines CNN and SwinTransformer [18]. Gao et al.[8] proposed
EarthFormer, which introduces a novel attention block, called Cuboid Attention, and is shown to
outperform the Rainformer model for nowcasting applications.

1.1 Our contribution

We adapt the global weather forecasting, euclidean grid-based, AFNO Transformer [9, 21] to learn the
cloud-climate feedback operator on a spherical grid that better respects the inherent structure of Earth.
Through it, we are able of making long-term climate projections regarding intervention scenarios.
For the spherical mapping, we use a geodesy-aware spherical co-ordinate system to uniformly sample
raw data.

2 Background

2.1 Climate Dynamics and Fluctuation Dissipation Theorem

The goal of this model is to learn a mapping between cloud changes and their consequent impacts on
key climate variables.

Ω(S) : δC(−→x , h, τ) −→

{
δΨatm

−→
(x), δΨocn

−→
(x), δTs

−→
(x), δP

−→
(x) (1)

However, as there is no existing library of cloud perturbation ESM simulations from which to learn
this mapping, we instead adopt an approach informed by the Fluctuation Dissipation Theorem (FDT).
The FDT posits that in certain systems, the linear response of the system to a perturbation can be
expressed in terms of the fluctuations of the system at equilibrium [13]. The climate system is one
such system, wherein chaotic internal variability can be used to estimate externally forced climate
response [20]. Thus, by training on a large pool of natural ESM fluctuations, the model is able to learn
mappings such that it is able to project the climate response to changes in cloud radiative properties.

In a conventional application of FDT, a linear response function (LRF, L) that maps between a set of
predictors (δf ) to a set of predictands (δX). For example, Liu et al., 2018 formulated a FDT operator
for the equilibrium response to a constant forcing δf as

δX = L−1
FDT δf (2)

where

LFDT = −
[∫ ∞

0

C(τ)C(0)−1dτ

]−1

(3)

for covariance matrices C and time lag τ . To effectively estimate the LRF, it is critical to have a large
sample of internal variability with which to estimate the covariance matrix. However, because the
climate system can respond non-linearly to forcing, there are limitations to the LRF-based approach.
Thus, we replace the LRF with an ML model, allowing a more comprehensive determination of
the relationships between variables. As we are learning based on natural internal fluctuations, we
must assume that the relationships between cloud radiation and surface climate are not substantively
modified by the levels of climate change we study herein (historical and near future warming).

3 Methods

The data are taken from monthly simulations of the CESM2 model. CESM2 is a fully-coupled,
community, global climate model that provides state-of-the-art computer simulations of the Earth’s
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past, present, and future climate states [6]. As described in the following section, we first map
the raw ESM data from its native euclidean grid to a spherical grid and then apply various climate
pre-processing techniques.

3.1 Spherical-grid aware modeling

Most ESMs use a Cartesian grid to represent the Earth. Typically, models use climate data in a
uniform 2D rectangular gridded pattern. While this may suffice local/regional modeling attributes,
they do not capture the physical/geodesy properties of the Earth, particularly as the focus moves
away from the equator. For this reason, we developed a geodesy-aware sampling that converts 2D
rectangular gridded coordinates to a geodesic grid type. There are several ways a geodesic grid can
be manifested and in this study we present results from using icosahedral grids [2].

We first develop a ‘backbone’ structure of a spherical coordinate system (icosahedron, healpix, etc.).
The properties of the spherical coordinates, such as levels or sub-divisions, are given as input. At this
point, the coordinates are simply graph networks. In the next step, we assign latitude and longitude
values to the graph network (x, y) so that they can be manifested in a geographical coordinate system.
Finally, we use the raw data from reanalysis or ESM output and perform bilinear interpolation to
obtain the final spherically-sampled data. The resulting data contain 40962 icosahedral pixels per
time snapshot, which corresponds to 110 km spatial (or 1 degree) resolution.

Having mapped the CESM2 data to a spherical grid, it is further pre-processed as follows:

• Remove seasonal cycle (Deseasonalize): We perform this process to remove any trends in
the season to prepare a seasonal stationary time series data.

• Remove trend (Detrend): We fit a third degree polynomial to remove any trend in data
over time. This removes secular trends (for example, rising temperatures as atmospheric
CO2 increases) and allows the model to be trained on fluctuations due to internal variability,
rather than the forced response.

• Normalized anomalies: The anomaly at each grid point is calculated relative to a running
mean that is computed over a centered 30-year window for that grid point and month.
Anomalies are normalized by dividing by the standard deviation of the anomaly over the
same 30-year window for that grid point and month.

• Remap data to Sphere-Icosahedral: Use Climate Data Operators to bilinearly remap
disparate grids to uniform level-6 Sphere-Icosahedral grid.

3.2 Problem formulation

After transforming the raw data as described above, we can now consider inputs Xt ∈ Rs×din and
corresponding outputs Yt+∆t ∈ Rs×dout , where t is the timestep of the inputs, ∆t the prediction
horizon (i.e. number of timesteps to predict into the future), s is the spatial dimension of the
icosahedral, and din, dout are the number of input and output features, respectively.

In our experiments we focus on learning simultaneous responses to cloud forcings, that is ∆t = 0.
As shown in Table 1 (in the appendix), we have that din = 7 and dout = 3, and when using the level-6
sphere icosahedral data grid it holds that s = 40962.

3.3 Transformers for spherical data

Motivated by the recent successes of transformer-based architectures in various domains, we explore
their potential for our problem and spherical data grid. However, prior work and applications usually
focused on sequential or euclidean data – applying transformers to spherical Earth data is a novelty.
For the present exploratory study we choose to adapt transformers in the simplest possible way to
spherical data. To do so, we simply view the spatial icosahedral pixel dimension, s, as the token
dimension of a transformer. With this problem formulation, we now only need to embed/project
the input data into a higher dimensionality, d, before passing it through any standard transformer
encoder architecture. On the output side, we apply a linear layer that projects the d channels of the
transformer output to the dout predicted output features.

3



Category Variable Description
Input cres TOA cloud radiative effect in shortwave
Input cresSurf Surface cloud radiative effect in shortwave
Input crel TOA cloud radiative effect in longwave
Input crelSurf Surface cloud radiative effect in longwave
Input netTOAcs TOA radiation without clouds (clear-sky)
Input netSurfcs Net clearsky surface radiation and heat flux
Input lsmask Land-sea binary mask

Output tas 2-metre air temperature
Output ps Surface pressure
Output pr Precipitation

Table 1: Input and output variables in our dataset.

Figure 1: Schematic of the workflow (image partially adopted from [9]).
.

As for the concrete transformer architecture, we choose to build upon the Adaptive Fourier Neural
Operator (AFNO) transformer [9]. It has proven successful for relevant applications such as weather
forecasting (using an euclidean grid) [21], and enjoys a better complexity of O(Nd2/k +Nd logN)
over the O(N2d+ 3Nd2) complexity of the standard self-attention transformers, where N := s is
the number of input tokens and k a hyperparameter of the AFNO. This is especially important for our
problem where the token size is around 40k. The resulting modeling workflow is shown in Figure 1.

4 Results and Discussions

We train the ClimFormer model using CESM2 data, prepared as described in Section 2.1. In this
section we present results from the learned operator for inference on the ERA5 dataset [10], which
is a reanalysis product produced by ECMWF. Reanalyses are models which ingest large quantities
observational data to estimate the historical evolution of the atmosphere, thus providing an estimate
of a wide range of atmospheric variables over the entire globe. While these data are not exactly the
same as observational data, they are the best method of obtaining physically consistent and complete
climate data representing the recent past of the Earth’s atmosphere.

Figure 2 shows the predictive ability of the model at a global level. The model is able to predict
accurately for most regions of the Earth and the deviance is fairly minor (5-7%) from the ground
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Figure 2: ClimFormer predictions on key climate prognostics shown on ERA5 data. Top row is ERA5
data, middle row are the corresponding ClimFormer predictions, and bottom row is the pixelwise
error difference.

Figure 3: Longitudinally averaged data showing model error, spread is the uncertainty in ground truth
data

truth. In Figure 3, the longitudinally averaged RMSE is plotted for the model output variables to
ascertain the prediction trends across major zones of the Earth system. It appears that the precipitation
skill is poorest (relative) in the tropics (around latitude 0), which is the zone of highest activity in
terms of global moisture budget (the interplay between evaporation and precipitation). The surface
temperature and pressure errors spike in the poles, but perform exceedingly well in the tropics which
receives the most energy, thereby building confidence in the model’s ability to learn the functional
operator.

5 Conclusions and Summary

In conclusion, this study proposes a spherical Transformer model, ClimFormer, to accurately represent
the cloud-climate feedback. We test it on out-of-distribution ERA5 datasets and show it is able to
generalize under moderate distributional shifts. In the ongoing phase of this study, we are using this
emulator to make climate projections under intervention scenarios such as Marine Cloud Brightening
[14]. This is especially useful since a model year run on ClimFormer takes about 2 seconds on
a single V100 GPU, whereas a comparable CESM2 simulation takes over 20 hours on 200 cores,
enabling larger design space exploration which, subsequently, can be validated by running targeted
ultra high-resolution CESM2 simulations.
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6 Broader Impact Statement

The Earth is warming at an unprecedented rate, and the increasing frequency of extreme weather
events is a testament to that. While reducing emissions and net zero pledges is at the center of
most attention in terms of climate change mitigation efforts, an increasing focus is being placed
onto climate intervention techniques such as Stratospheric Aerosol Injection and Marine Cloud
Brightening. The scope of this study is to not endorse any particular technique over another (or
climate intervention as a necessary step overall) but to simply conduct a scientifically thorough
academic/research study in terms of scenario planning, should these steps be necessary as a last resort
in the future.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [No] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [N/A]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [No]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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