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Abstract

In recent years, super-resolution and related approaches powered by deep neural
networks have emerged as a compelling option to accelerate computationally ex-
pensive cosmological simulations, which require modeling complex multi-physics
systems in large spatial volumes. However, training such models in a physically
consistent way is not always feasible or well-defined, as the data volume output
by a super-resolution model may be too large, and the spatiotemporal dynamics
of the simulation as well as the statistics of key observables like Lyman alpha
(Lyα) flux are very sensitive to changes in resolution. In this work we address
both challenges simultaneously, training neural networks to synthesize Lyα and
other hydrodynamic fields with correct statistics on the relevant length scales but
represented on the coarse grid of the input simulations. Effectively, our method
is capable of 8x super-resolving a coarse simulation in-place without increasing
memory footprint, using just a single pair of simulations for training. With chunked
inference, we are able to apply the model to simulations of arbitrary size after train-
ing, and demonstrate this capability on a very large volume simulation spanning
600 Mpc/h.

1 Introduction

The Lyman alpha (Lyα) forest is a primary probe of cosmological structure at redshifts 2 ă z ă

6 with length scales ranging from sub-megaparsec (Mpc) to tens of Mpc, complementing other
probes by extending the reach to significantly smaller scales. This allows extracting information on
neutrino masses, dark matter properties, inflation and reionization in the early universe [18; 15; 4;
25; 21; 8; 2; 22]. Answering these fundamental cosmological questions necessitates not only precise
observations, but also the creation of simulated model universes which help constrain parameters
of a cosmological model. To compare numerical simulations with the growing body of increasingly
accurate measurements of the Lyα forest, it is critical that the simulated models are of precision
comparable to that of the data, but doing so requires state-of-the-art supercomputing resources.
More specifically, to resolve the Lyα forest at percent-level accuracy, the spatial resolution required
is ∆x „ 20 kpc/h [13; 23] which implies simulated volumes of Lbox „ 80 ´ 160 Mpc/h with
40963-81923 resolution elements.
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Figure 1: The Power Spectrum of baryon density (left) and Lyα flux (right) from our validation
simulation. The discrepancy at high frequencies in baryon density (and other hydrodynamic quantities)
at low resolution (grey) leads to errors on all frequencies in Lyα flux. Our model (purple) produces
an estimate of flux from the low-resolution simulation which avoids these errors, by training on a
target (orange) subsampled from the high-resolution simulation. The ratios are taken with respect to
the high-resolution simulation. The vertical dashed line indicates a rough cutoff for DESI resolution.

At such a box size, the simulated volumes are still a factor of „20 smaller on a side than the volume
which will be observed by the ongoing DESI survey [5]. Because of the low-density of quasars in
previous large-volume spectroscopic surveys, a 3D Lyman-α power spectrum (P3D) measurement
– measuring both large („ 100 Mpc) and small-scale („ 1Mpc) flux fluctuations at the same time
– has never been performed. However, the P3D is a cosmic gold mine that can strongly improve
many cosmological constraints, and the large increase of close quasar lines of sight in DESI will
allow for such a measurement for the first time. To interpret the observational measurement, the
gap in spatial scales between simulated and observed volumes is a key challenge which needs to
be addressed. An attractive potential solution to this problem is to ease the computation burden of
full-physics, full-resolution simulations by leveraging deep neural networks for super-resolution
or similar coarse-to-fine mappings, an idea that has received widespread interest in the general
cosmological community [6; 7; 20; 19; 11; 10; 14; 3].

Super-resolution and the more general idea of mapping from coarse, computationally cheap inputs
to the desired fine-grained outputs is appealing, but meets several challenges when applied to
multi-physics cosmological simulations [6]. On extreme computational scales, the cosmological
volumes of interest may be simply too large to apply standard super-resolution, as our model output
may overwhelm storage resources [11]. Compounding the problem, defining the training targets
themselves may be a non-trivial and resolution-dependent task. For example, in the case of Lyα flux
considered here, the operation to compute optical depth from hydrodynamic fields such as baryon
density, temperature, and local velocity (an analytical integral done in simulation post-processing),
does not commute with downsampling or upsampling operators, and this strongly degrades the shape
of standard summary statistics like power spectra (see Figure 1).

In this work, we address the aforementioned concerns related to data volumes, computational
constraints, and resolution-dependence, and present a deep neural network capable of generating
Lyα with high accuracy at the relevant scales from coarse inputs. We achieve this by training an
adversarial U-Net on carefully sampled data, and arrive at a model which is capable of effectively
performing 8x super-resolution in-place with relatively little training data. Once trained, our model
can then be applied to very large volume simulations and produce mock Lyα skies with power spectra
accurate to a few percent, even at the length scale limit of modern surveys such as DESI.

2 Simulation Data and Resolution Dependence

We use simulations from the cosmological hydrodynamics code Nyx [1] as the basis for our inves-
tigation. Nyx is a state-of-the-art, adaptive mesh, N-body and gas dynamics code for large-scale
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Figure 2: Comparison of simulated and predicted Lyman-α Flux, F (the fraction of light that passes
through a region). The left and right panels illustrate how the scales and features in simulated Lyα
are heavily dependent on the resolution used. Our model prediction (middle panel) is much closer to
the high-resolution result, despite only requiring the low-resolution hydrodynamic fields as input,
and making Lyα predictions only on the reduced grid of the low-resolution box.

cosmological simulations, modeling temporal evolution of the universe via a system of discrete dark
matter particles gravitationally coupled to an inviscid ideal fluid in a co-moving, expanding box.

The core hydrodynamic outputs of a Nyx simulation are baryon density, temperature, and velocity.
These quantities can then be post-processed, accounting for ultraviolet (UV) background and atomic
physics, to yield an optical depth τ indicating the local opacity to a certain wavelength of light, in
our case that of the Lyman α absorption line in neutral hydrogen. From τ one can attain a Lyα flux
map F “ expp´τq representing the fraction of light that passes through given points in the IGM. We
visualize example flux maps from low and high resolution Nyx simulations in Figure 2, rendering F
in 2D slices with lines-of-sight along the horizontal direction.

The grid resolution per box side in Nyx is determined by the number N3 of dark matter particles,
and important Lyα summary statistics like the power spectrum P pkq are extremely sensitive to the
chosen effective resolution [13]. Unfortunately, unlike raw hydrodynamic or N -body outputs, Lyα
flux accuracy is severely degraded even at the lowest wavenumbers for under-resolved simulations
when compared to the reference high-resolution run, as shown in the right panel of Figure 1. As
high-resolution simulations are computationally infeasible and generate overwhelming data volumes,
we aim to perform effective 8x super-resolution by correcting Lyα flux F from a coarse simulation
pN “ 512, L “ 80Mpc{hq towards that of a corresponding high resolution run pN “ 4096, L “

80Mpc{hq, while still representing F on the coarse grid to minimize the disk footprint of outputs.

To train our model, we feed low-resolution hydrodynamic fields (baryon density, temperature, and
velocity) from a coarse simulation as input and predict the corresponding subsampled Lyα flux F
from the high-resolution simulation. We use one pair of coarse and fine simulations for training, and
another pair for validation, and all data is sampled from snapshots of the simulations at redshift z “ 3.
Each pair is matched by sharing identical initial conditions, up to the resolution limit in Fourier space.

To preserve the statistics of the high-resolution field when downsampling Lyα flux for use as a training
target, we must use direct subsampling to guarantee that the power spectrum will be unaffected at
low k (see the orange line in Figure 1) and that the probability density will be representative. This
comes at the expense of aliasing at the 1-4 voxel scales, and is also not entirely rotation invariant, as
there is no cell in the larger field that lies exactly in the center of a cell in the smaller field. However,
all alternative methods for downsampling perturb the Lyα power spectrum too much, making them
inadequate for our use-case.

3 Model Architecture and Training

Since our formulation of the coarse-to-fine task does not require actually adding resolution elements
in the spatial dimensions, we choose the U-Net architecture [16] for its simplicity and strong
performance in cosmological applications [6; 19]. Our U-Net employs residual convolution blocks
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Figure 3: Our model architecture is a modified 3D U-Net with extra internal residual connections,
taking the coarse hydrodynamic fields as input and predicting a corrected Lyα flux field as output.

between each down-sampling and up-sampling step, which improves the accuracy of the power
spectrum and the reproduction of fine features. To constrain the output field to F P p0, 1q we use a
sigmoid activation at the final layer, which performed better than ReLU in our tests.

We train our model with a weighted combination of L1 loss and adversarial loss LGAN, which is
given by a multi-scale patch-based discriminator [24]. We also improve the accuracy of the power
spectra further by enforcing an additional Fourier-based loss Lfft, which measures the difference
between the Fourier transforms of the prediction and target, truncated at k “ 10 h/Mpc. For training,
we normalize our input physical fields following [6], and leave F in its natural p0, 1q range. We list
hyperparameters in Appendix A.

Since our model is fully convolutional, we can train on small crops (1283 voxels) and apply on larger
ones (e.g., 5123 voxels) at inference time, depending on GPU memory limits. For full-box inference
on very large simulations, we partition the volume into chunks (with some padding to minimize edge
effects) and run inference in parallel, then reassemble the chunks into a contiguous array.

4 Results

After training, we evaluate our model on a separate volume of the same dimensions. In Figure 2
we plot 2D slices of the Lyα flux from our model, compared against the reference high-resolution
simulation. We also plot the coarse Lyα flux given by analytical computation of τ directly from the
low-resolution hydrodynamic fields, which is what one would see in the absence of our model. Our
model is able to greatly improve over the coarse baseline, capturing both large and small-scale features
well and closely matching the spatial patterns of the high-resolution run. The visual discrepancy
between the model output and high-resolution target is only noticeable at the very finest scales.

For a quantitative assessment of our model, we focus on the Lyα power spectrum P pkq, arguably
the most important summary statistic for Lyα flux analysis, and take the P pkq in the reference
high-resolution simulation as the ground truth. As shown in Figure 1 the power spectrum of our
estimated field is significantly better than that of the low-resolution result, particularly over scales
which will be observable in surveys like DESI (k ă 4.2 h/Mpc). In particular, our estimated P pkq

achieves ă„ 1% difference for k ă 2 h/Mpc, and ă„ 5% difference for k ă 5 h/Mpc. This is
far better than the low-resolution result which has ą 10% difference for most of this range, even
deviating at low k as well as high k. We observe larger divergence at scales beyond the DESI limit,
as expected from using the subsampled high-resolution Lyα as a training target. However at such
scales the observational uncertainty is too large to make proper use of high-resolution simulations in
the first place, so we do not consider this a limitation of the model.

5 Conclusion

In this work we present a novel approach to estimating Lyα flux from coarse simulations, taking
care to curate and sample a training set from paired low- and high-resolution Nyx simulations. We
demonstrate that our approach allows accurate reconstruction of the statistics of Lyα flux, closely
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matching a full-resolution simulation across the relevant scales, without adding any additional
resolution elements. We thus effectively perform 8x super-resolution, but in a physically consistent
and computationally practical manner, such that our model can be easily applied to large-scale
cosmological volumes. We provide an illustrative demonstration of this exciting capability in
Appendix B. In general, our method could be used to close the major gap in spatial scales between
current simulation capabilities and upcoming observational products.

Broader Impact

We are not aware of any negative social impacts of the work presented here. While generative
adversarial networks similar to the techniques used in this work can be used outside the domain of
cosmology for malicious cases such as deepfakes, our architecture and adversarial loss terms consist
of known techniques already present in the machine learning community and the novelty of our work
is the deployment of these techniques in a practical and careful manner on cosmological modeling
tasks. A potential positive impact of our method is the reduction in energy consumption due to
computational savings avoiding the expensive full-resolution simulations.
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[13] Z. Lukić, C. W. Stark, P. Nugent, M. White, A. A. Meiksin, and A. Almgren. The Lyman α forest in
optically thin hydrodynamical simulations. Mon. Not. Royal Astro. Soc. , 446(4):3697–3724, Feb. 2015.
doi: 10.1093/mnras/stu2377.

[14] Y. Ni, Y. Li, P. Lachance, R. A. C. Croft, T. Di Matteo, S. Bird, and Y. Feng. AI-assisted superresolution
cosmological simulations – II. Halo substructures, velocities, and higher order statistics. Monthly Notices
of the Royal Astronomical Society, 507(1):1021–1033, 07 2021. ISSN 0035-8711. doi: 10.1093/mnras/
stab2113. URL https://doi.org/10.1093/mnras/stab2113.

[15] N. Palanque-Delabrouille, C. Yèche, J. Baur, C. Magneville, G. Rossi, J. Lesgourgues, A. Borde, E. Burtin,
J.-M. LeGoff, J. Rich, M. Viel, and D. Weinberg. Neutrino masses and cosmology with lyman-alpha forest
power spectrum. Journal of Cosmology and Astroparticle Physics, 2015(11):011–011, nov 2015. doi:
10.1088/1475-7516/2015/11/011. URL https://doi.org/10.1088/1475-7516/2015/11/011.

[16] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention, pages 234–
241. Springer, 2015.

[17] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for
training gans. Advances in neural information processing systems, 29, 2016.

[18] U. Seljak, A. Slosar, and P. McDonald. Cosmological parameters from combining the lyman-α forest
with CMB, galaxy clustering and SN constraints. Journal of Cosmology and Astroparticle Physics, 2006
(10):014–014, oct 2006. doi: 10.1088/1475-7516/2006/10/014. URL https://doi.org/10.1088/
1475-7516/2006/10/014.

[19] L. Thiele, F. Villaescusa-Navarro, D. N. Spergel, D. Nelson, and A. Pillepich. Teaching Neural Networks
to Generate Fast Sunyaev-Zel’dovich Maps. The Astrophysical Journal, 902(2):129, Oct. 2020. doi:
10.3847/1538-4357/abb80f.

[20] T. Tröster, C. Ferguson, J. Harnois-Déraps, and I. G. McCarthy. Painting with baryons: augmenting
N-body simulations with gas using deep generative models. Monthly Notices of the Royal Astronomical
Society, 487(1):L24–L29, July 2019. doi: 10.1093/mnrasl/slz075.

[21] M. Viel, G. D. Becker, J. S. Bolton, and M. G. Haehnelt. Warm dark matter as a solution to the small scale
crisis: New constraints from high redshift lyman-α forest data. Phys. Rev. D, 88:043502, Aug 2013. doi:
10.1103/PhysRevD.88.043502. URL https://link.aps.org/doi/10.1103/PhysRevD.88.043502.

[22] M. Walther, J. Oñorbe, J. F. Hennawi, and Z. Lukić. New constraints on IGM thermal evolution from the lyα
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Appendices
A Additional model details

Our multi-scale patch-based discriminator is based on the implementation from TSIT [9], a state-of-
the-art image synthesis model. The adversarial loss term LGAN is given by a weighted combination
of hinge [12] loss and feature-matching (Feat) loss [17] to improve training stability for the U-Net.
We list network hyperparameters in Table 1.

Table 1: Hyperparameters for our netowrks.

Hyperparameter Value

Global batch size 16
Training crop size 1283

Optimizer Adam(β1 “ 0.5, β2 “ 0.999)
Learning rate 2E-4
λL1 1500
λfft 500
λFeat 100
Number of U-Net layers 4 levels, 2 layers per level
Multi-scale discriminators 2
Discriminator layers 4

Our model takes around 25 hours to train on 16 A100 GPUs.

B Large-scale inference

We demonstrate the preliminary use of our model for synthesizing Lyα on large-scale cosmological
volumes by applying the trained network to a very large box of size 600 Mpc/h. We do not run a
dedicated 600 Mpc/h simulation for this demonstration, but rather re-purpose an existing simulation
from an unrelated investigation. Unfortunately this means there is a mismatch in resolution with
respect to our training and validation data; namely, the coarse inputs we use for training and validation
have an effective resolution of „156 kpc/h while the large volume has an effective resolution of
„98 kpc/h. Consequently, to match resolution we must downsample the data from the large box
by a factor of „0.63, which we do so in chunks due to computational limitations, and this process
introduces minor artifacts.

Nevertheless we show a visualization of our model output in Figure 4, which renders a 2D slice
similar to those in Figure 2 but covering a much greater spatial extent. The data and computational
savings enabled by our model in this context are enormous – we estimate running a high-resolution
simulation at that scale would require „1 billion CPU hours and the outputs would consume „700
TBs of disk space. By correcting the Lyα flux on the coarse grid, we are able to reduce the disk
footprint of the output Lyα flux to 200GB, several orders of magnitude lower. The physical volume
used to train our model is a factor of „422 smaller than the volume we demonstrate inference on
here.

8



0 100 200 300 400 500 600
Mpc/h

0

100

200

300

400

500

600

M
pc

/h

Figure 4: Visualization of the Lyα prediction from our model when running inference on a large-scale
volume with side-length 600 Mpc/h. The inset shows a zoom on a region roughly 40 Mpc/h in size,
which is nearly the size of our training volume.
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