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Abstract

We investigate the use of Physics-Informed Neural Networks (PINNs) for ice
shelf hardness inversion, focusing on the effect of the relative weighting between
equation and data components in the PINN objective function on its predictive
performance. In the objective function we use a hyperparameter γ which adjusts
the relative priority given to the fit of the PINN to known physical laws and its fit
to the training data. We train the PINN with a range of γ, and training data with
varying magnitudes of injected noise. We find that the PINN solutions converge
to two different clusters in the prediction error space; one cluster corresponds to
accurate, "low-error" solutions, while the other consists of "high-error" solutions
that were likely trapped in a local minimum of the PINN objective function and fit
poorly to the ground truth datasets. We call this the PINN clustering behaviour,
which persists for a wide range of γ, noise level, and even with clean data. Using
k-means clustering, we filter out the PINN solutions in the high-error clusters. The
accuracy of the solutions in the low-error cluster varies with γ and the data noise.
We find that the value of γ that minimizes the error of PINN-predicted ice hardness
varies significantly with the data noise. With the optimal choice of γ, the PINN
can remove the noise in the data and successfully predict the noise-free velocity,
thickness and the ice hardness. The clustering phenomenon is observed for a wide
range of parameter settings and is of practical, as well as theoretical interest.

1 Introduction

Ice shelves are the floating extensions of grounded ice sheets. They buttress upstream glaciers and
play a crucial role in slowing ice flow into the ocean [4, 3, 6]. Ice hardness (B) is a fundamental
material property that governs ice shelf dynamics, but cannot be directly measured. Here, we explore
a novel approach, the Physics Informed Neural Network (PINN) [12], for hardness inversion of an
idealized ice shelf. Physics Informed Neural Networks (PINN) [12] are a class of differential equation
solvers that have demonstrated effectiveness in wide-ranging physical problems[16, 13, 1, 2] [11]
[5] [14]. PINNs incorporate knowledge of the physical equations governing natural phenomena as a
regularizer for a more traditional neural network predicting relations between variables of interest.
Enforcing known physics equations during neural network training is demonstrated to reduce the
amount of training data required [12, 13, 16] and to make PINNs more robust to noisy data [12, 13,
1]. PINNs work well when data points are available on an irregular grid [13, 9]. However, the effect
of the relative weighting of the observations and the governing physics equations on the predictive
performance of PINNs is poorly understood.

In this paper, we include a weighting parameter γ in the PINN objective function and investigate
its role on PINN performance in the context of ice shelf modeling. We generated synthetic data by
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specifying a hardness profile with an analytical solution for velocity u(x) and thickness h(x), then
adding different levels of Gaussian noise. Then, we trained a PINN on clean and noisy datasets
for a range of γ-values in order to quantify the relationship between γ, noise level, and predictive
performance. This work is a step towards the optimization of PINNs for ice shelf hardness inversion
under more realistic conditions; furthermore, it offers insight into the role of γ on the general PINN
framework.

2 Governing equations of ice shelf flow

In this paper, we use a one-dimensional version of the Shallow-Shelf Approximation (SSA) [8, 10]
to model an idealized problem in which the ice shelf spreads unidirectionally along the x-axis, i.e.
the ice shelf dynamics are characterized by velocity u(x), thickness h(x), and ice hardness B(x).
Equations (1) summarize the final form of the equations and boundary conditions used to train the
PINNs.

2ν⋆B

(
du

dx

) 1
n

= h, u(0) = 1, h(0) = h0. (1)

B, u, and h have been rescaled by characteristic values of hardness, and thus represent dimensionless,
velocity, and thickness, respectively [15]; ν⋆ is a constant that encapsulates all of these re-scaling
constants. These equations can be solved for analytically when B(x) = k, where k is a constant.
A constant hardness profile is the simplest case for testing the application of PINN to hardness
inversion, making it a natural starting point. Following the analytical solution derived by van der
Veen (1986) [7, 17], we obtain the solution (ground truth) of velocity and thickness profiles for
B(x) = 1, and ν⋆ = 1
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3 PINN experiment setup

We are interested in the ability of a trained PINN to predict the correct velocity, thickness, and
hardness profiles u(x), h(x), and B(x), for any x in the spatial domain x ∈ [0, 1], after being trained
on finite, noisy observations of only u(x) and h(x) described by Equation (2). We note that no data
on B(x) is given to the PINN during training; thus, the PINN prediction of B(x) is obtained purely
by adding the physics constraints in the objective function (Equation (6)). We first generate a clean
dataset {u(xi), h(xi)}ki=1 by evaluating (2) at k = 401 x-locations, equally spaced over the whole
spatial domain. Then, we create a noisy dataset {uobs(xi), hobs(xi)}ki=1 (see details below).

Next, we trained a simple feedforward neural network fΘ : R2 → R3 with two 5-unit hidden layers.
fΘ is trained with potentially noisy observations of velocity and thickness data [uobs(xi), hobs(xi)]
and generates a prediction [û(xi), ĥ(xi), B̂(xi)].1 The PINN objective function takes the form

J(Θ) ≡ γ E(Θ) + (1− γ)D(Θ) (3)

where

D(Θ) =
1

k

k∑
i=1

(
(û(xi)− uobs(xi))

2
+
(
ĥ(xi)− hobs(xi)

)2)
(4)
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Note in Equation 5 we use the subscript j to denote the evaluation each quantity at collocation point
{xj}cj=1. Collocation points specify the coordinates at which to evaluate how accurately the current
fΘ obeys the known PDE.; they are not restricted to points {xi}ki=1 in the domain where observations
are available. In terms of D(Θ) and E(Θ), the PINN objective function is

J(Θ) ≡ γ E(Θ) + (1− γ)D(Θ) (6)
1The source code is available at https://github.com/YaoGroup/pinn_clusters
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We refer to E(Θ) as the equation loss, and D(Θ) as the data loss [12]. PINNs leverage automatic
differentiation (autodiff) [12] to evaluate derivatives of ûΘ(x, t) involved in the equation loss. Because
the prediction of B(x) relies on the physics equation (the E(Θ) term in the objective function (6)),
we are interested in the role of the hyperparameter γ on the predictive performance of a PINN trained
on datasets with varying noise levels (defined below). We introduce three new performance metrics
Berr, uerr, and herr:

Berr =
1

k

k∑
i=1

∣∣∣∣∣∣B̂(xi)−B(xi)
∣∣∣∣∣∣2 , uerr =

1

k

k∑
i=1

||û(xi)− u(xi)||2 , herr =
1

k

k∑
i=1

∣∣∣∣∣∣ĥ(xi)− h(xi)
∣∣∣∣∣∣2

(7)
where u, h, and B are ground truth values. We conducted systematic experiments in order to
quantify the relationship between γ, noise level, and the three performance metrics defined above. We
conducted 501 experimental "trials” for each combination of noise level and γ-value. An experimental
trial consists of the following steps (1)-(5):

(1) Create a noisy dataset {uobs(xi), hobs(xi)}ki=1 by adding a value randomly drawn from a Gaussian
distribution centered at 0 to each data point in the clean dataset. The level of added noise is adjusted
by modifying the standard deviation of the Gaussian distribution. We call the standard deviation of
the Gaussian distribution used to generate a dataset as its noise level. (2) Choose c = 201 collocation
points {xj}cj=1. The points were initially drawn uniformly over the spatial domain x ∈ [0, 1], then
cubed in order to bias the points toward x = 0, where the gradient of both u(x) and h(x) are
large. We also tested experiments using c = 1001, which produced qualitatively similar results. (3)
Randomly initialize the parameters of the PINN. (4) Train the PINN using the objective function
for the specified value of γ. Training was continued until convergence, or a maximum of 400,000
iterations of gradient descent using Adam optimizer with learning rate 0.001, followed by 200,000
iterations of LBFGS optimizer. (5) Evaluate Berr, uerr, and herr of the PINN prediction.

Six noise levels were tested: 0.0 (clean data), 0.01, 0.05, 0.1, 0.2, and 0.3. For each noise level,
thirteen values of γ were tested (in total ∼39k trials). Because we are interested in the relative
weighting of the equation and data loss, the gammas were chosen so that the ratios γ

1−γ would be
logarithmically spaced over the range [10−4, 108]. We ran trials on the Princeton Della-CPU Cluster;
one trial with a single value of gamma and noise level takes approximately 10 minutes to complete.

4 Results

Bimodal prediction errors We examined uerr vs. Berr and herr vs. Berr for every trial with a
given γ

1−γ and noise level. Figure 1 presents the distributions of trial error for noise level = 0.01;
however, our results were qualitatively similar for all noise levels, including the trials using the clean
data set.

Figure 1: Correlation of Berr with uerr and herr over 501 trials for various values of γ
1−γ and noise

level = 0.01. Left: uerr vs. Berr. Right: herr vs. Berr.

Figure 1 suggests that Berr, uerr, and herr are bimodally distributed on a logarithmic scale. The
bimodal clustering behavior, with one cluster corresponding to very high error (greater than the
average magnitude of the clean data) and the other corresponding to relatively low error, and very few
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trials in between, has not been systematically reported previously. Clustering persisted for repeated
experiments with modifications such as significantly increased collocation points (c = 1001) and
increased neural network width (up to 100 hidden units).

k-means clustering We quantitatively characterize the bimodal distribution of PINN prediction error
using k-means clustering. For each combination of γ

1−γ and noise level, we have a corresponding
dataset {ϵi}501i=1, ϵi = ⟨uerri , herri , Berri⟩, where uerri , herri , and Berri denote the values of the
performance metrics introduced in (7) for the i-th training trial. For all combinations of γ

1−γ and
noise level, we run k-means clustering with k = 2 in 3D space in terms of transformed coordinates
⟨log10(uerr), log10(herr), log10(Berr)⟩. We denote data points assigned to the cluster center with
the lower value of Berr as the low-error cluster; the data points assigned to the other cluster center
are referred to as the high-error cluster. The PINN solutions in the low-error and high-error cluster
roughly corresponds, respectively, to approximately < 10% and > 100% relative error in all three
predictive variables.

Figure 2: Average error in predictive variables for low-error clusters, for all noise levels and γ. (a)
Average Berr in low-error clusters. (b) Average uerr in low-error clusters. (c) Average herr in
low-error clusters.

Low-error cluster statistics We focus our analysis on uerr, herr, and Berr for low-error clusters.
In Figure 1, Berr, uerr, and herr appear to be correlated on a log-log scale; within the low-error
cluster, small uerr and herr correspond to small Berr, while large uerr and herr correspond to large
Berr. In Figure 2, we plot the average Berr, uerr, and herr in low-error clusters for each tested
noise level and γ. We observe that for all noise levels, average uerr and herr in low-error clusters
generally decrease as γ

1−γ decreases, with predictive performance tapering for sufficiently small γ
1−γ .

However, we notice that the plot of the low-error cluster means for Berr for each noisy dataset has a
clear minimum.

5 Concluding Remarks

We systematically investigate the performance of PINNs applied to the inverse problem of 1D ice
shelf flow. We discover an unexpected bimodal distribution (clustering) of PINN predictions in
the prediction error space. There exists a "low-error mode" corresponding to PINN solutions with
approximately < 10% relative error in all three predictive variables, and a "high-error mode" with
approximately > 100% relative error. This bimodal behavior suggests that the loss landscape of the
PINN objective function with a regularizer enforcing the governing equation has two local minima,
one corresponding to relatively low predictive error, and the other corresponding to high predictive
error. Using k-means clustering we successfully filter out the high-error solutions. The distribution
of PINN prediction errors in the low-error cluster are highly dependent on γ ∈ [0, 1] and the noise
level of the data. The optimal weight of the equation loss γ = γ∗

low that minimizes average error over
low-error solutions depends strongly on the noise level of the training data. For data without noise
and with noise level = 0.3, the optimal weights are γ∗

low ≈ 0.0001 and γ∗
low ≈ 0.9999, respectively.

Weighting the equation and data loss components equally is a sufficient strategy only in the case
of clean or very low-noise data; for datasets with higher levels of noise, equal weighting reduced
the accuracy of the PINN predictions. Due to the broad applications of PINNs in scientific machine
learning, significant work is needed to further explore the clustering behaviour of PINN predictions,
the loss landscape of PINNs as a function of γ, and the dependence of optimal γ on the data noise.
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6 Impact Statement

Understanding ice-shelf dynamics is not only a fundamental geophysical question, but an urgent area
of research that is essential for predicting the effects of global warming on sea-level rise. We use
physics-informed neural networks (PINNs) to predict ice hardness, a material property that governs
ice shelf dynamics, but is challenging to measure. We show that, despite the absence of training
data of ice hardness, PINNs can successfully infer ice hardness purely based on physical laws. In
this paper, we systematically investigate the effect of the relative weighting of data and equation
components of the PINN objective function in the context of an ice hardness inversion problem.
With hundreds of trials for each experiment, we discovered an unexpected bimodal distribution of
predictive errors across training trials (which we refer to as “clustering behavior”) that persists for a
wide range of the relative weight given to the equation loss, the number of collocation points, and
PINN width. Thus, in addition to serving as a preliminary step for deep-learning based ice hardness
inversion, our work highlights critical future research directions for successful PINN implementation
in numerous potential scientific applications.
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