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Abstract

We propose a new class of efficient layer called CombiConv (Combinational-
convolution) that improves the acceptance rate for the flow-based sampling al-
gorithm for quantum field theory on the lattice. CombiConv is made from a
d-dimensional convolution out of lower k-dimensional

(
d
k

)
convolutions and com-

bining their outputs, and CombiConv has fewer parameters than the standard
convolutions. Furthermore we apply CombiConv to the flow-based sampling algo-
rithm, Furthermore, we find that for every d = 2, 3, 4-dimensional scalar ϕ4 theory
CombiConv for k = 1 achieves a higher acceptance rate than others.

1 Introduction

Quantum Chromo-dynamics on the lattice (lattice QCD) is one of the most successful theories in high
energy physics [1], which describes the subatomic world fundamentally. Lattice QCD is a quantum
field theory defined on discretized spacetime, and the discretization makes degrees of freedom finite,
which enables us to perform numerical integration of the quantum expectation values with Markov
chain Monte-Carlo. However, the ultraviolet cutoff in lattice QCD, namely finite lattice spacing,
brings unwanted artifacts into results, which have to be eliminated by extrapolation. Finer lattice
spacing gives smaller lattice artifacts, but it causes long autocorrelation among the Monte Carlo
samples, which is called critical slowing down [2].

To make Monte-Carlo sampling efficient, a new algorithm with a shorter autocorrelation time
is demanded. Algorithms with machine learning for lattice field theory have been investigated
[3, 4, 5, 6, 7, 8, 9] to solve the critical slowing down problem, and the flow-based sampling algorithm
has the potential to resolve it [10, 11] , which has been extended to systems with gauge fields [11, 12]
and fermions [13, 14, 15].

The flow-based sampling algorithm, an algorithm with a generative model, is an exact algorithm
of Monte-Carlo configuration generation for quantum field theories associated with the Metropolis–
Hastings test. As shown in [10], a larger acceptance rate gives a shorter autocorrelation time on the
flow-based sampling algorithm; thus, a model with a large acceptance rate is demanded.

The flow-based sampling algorithm works in any number of physical dimension, but the acceptance
rate would decrease in higher dimensions since the Metropolis-Hastings test is sensitive to the number
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of active degrees of freedom. There are several proposals to improve the acceptance rate [16, 17], but
here we propose a novel way to improve it based on the global symmetry of the target system.

In this paper, we study a model architecture of convolutional layers for the flow-based sampling
algorithm. We propose a class of efficient layer called CombiConv (Combinational-convolution)
and apply it to d-dimensional scalar field theory. We confirm that our proposal achieves a higher
acceptance rate in d = 2, 3, 4 than others.

2 Preliminary

In this section, we explain our proposal and setup for our numerical experiments.

2.1 Combinational-convolution

Consider a standard d-dimensional convolution which is parameterized by d-dimensional convolution
kernel of size (f, . . . , f) ∈ Rd for some positive integer f . CombiConv factorizes the convolution into
lower k-dimensional ones (fig. 1). For d-dimensional input data, there are

(
d
k

)
= d!/(k!((d− k)!))

patterns to select k-axes (i1, . . . , ik) from d-axes. For each pattern we create a d-dimensional
convolution kernel (f1, . . . , fd) such that fi = f if i ∈ {i1, . . . , ik} otherwise fi = 1 and convolve
the input data using this convolution kernel. In practice it is realized by a k-dimensional standard
convolution parameterized by k-dimensional convolution kernel of size (f, . . . , f) ∈ Rk. Then
we calculate the mean of these

(
d
k

)
-output and pass it to an appropriate activation function. We

call this architecture CombiConv-a or CombiConv(d, k) if we need explicitly specify d and k. The
implementation details can be found in GomalizingFlow.jl [18]

Figure 1: Schematic pictures of convolutional operations. (left) Conventional 3× 3 convolutional
operation on a two-dimensional image. (right) CombiConv operation with d = 2, k = 1 on a
two-dimensional image. It consists of 3× 1 convolution (blue) and 1× 3 convolution (red) layers.
Each convolution can be realized by one-dimensional convolution of kernel size 3.

By construction, the CombiConv layer have fewer parameters than that of the standard convolutional
layer. The memory efficiency of parameters can be understood as follows. Let us consider d-
dimensional configuration and let f be the kernel size for convolution. The number of parameters in
the standard convolution is Wstd ∝ fd and our proposed CombiConv(d, k) is WCombiConv ∝

(
d
k

)
fk.

For example, the efficiency is Wstd/WCombiConv = 6.75 for d = 4 and k = 1.

The CombiConv keeps translation, 90-degree planar rotations, and the reflection on the configuration
while it suppresses unnecessary 45-degree planar rotations. In particular, for the case k = 1, the
output of CombiConv removes the contributions of diagonal elements in each area that overlaps the
kernel of the standard convolution.

Figure 2 shows the behavior of CombiConv in two dimension. (a) is an input example. (b) and
(c) are output from the standard convolution with fixed weights (discretized Laplacian filter) and
CombiConv with fixed weights (discretized Laplacian filter, k = 1), respectively. The standard
one has extra points at 45-degree rotated points compared to CombiConv. To see the effect more
clearly, we plot the difference between the output of a standard convolution and CombiConv for a
two-dimensional feature map in (d). It shows CombiConv suppresses the contributions of diagonal
elements of the center of the output feature compared to the standard convolution. Thanks to the
architecture of CombiConv(d, k) we can implement convolutional layer using k(< d)-dimensional
standard convolutions for an arbitrary d. In particular, for the case with more than three dimension, we
can avoid using higher dimensional convolution which is not provided publicly by most of machine
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(a) Input (b) 2D conv (c) CombiConv(2, 1) (d) 

Figure 2: Comparison output of convolutional operations. (a) Input data with cross shape (b) Output
of conventional convolutional for input data (a). (c) Output of CombiConv(d = 2, k = 1) for input
data (a). (d) Difference between output of (b) and (c)

learning frameworks and use optimized libraries for lower dimensional convolution. The code is
implemented based on GomalizingFlow.jl [18], and calculations are performed on Google Cloud
Platform with 4 vCPUs, 15 GB RAM and a single NVIDIA Tesla T4 (16GB) GPU.

2.2 Scalar field theory

Here we consider scalar field theory on a d-dimensional periodic square lattice of length L. Brief
review of lattice QCD and scalar field theory is in Appendix. The partition function of the scalar field
theory is,

Z =

∫  Ld∏
n=no

dϕn

 e−S(QFT)[ϕ], S(QFT)[ϕ] = −
Ld∑

n=no

ϕ(n)∂2ϕ(n) +

Ld∑
n=no

V [ϕ](n), (1)

where no is the origin, n is a point on the lattice. ∂2ϕ(n) =
∑d

µ=1[ϕ(n+ µ̂) + ϕ(n− µ̂)− 2ϕ(n)]

is a discretized Laplacian and, µ̂ is a unit vector for µ direction. V [ϕ](n) = m2ϕ2(n) + λϕ4(n), is a
potential term with mass m2 ∈ R and coupling λ ∈ R≥0. Conventionally, we evaluate expectation
values with eq. (1) with Hamiltonian/Hybrid Monte-Carlo [19], but here we utilize the flow-based
sampling algorithm [10] and compare the acceptance rate.

3 Results

To examine the validity of CombiConv, we show how our architecture increase the acceptance rate.
We construct the affine coupling layer as in [20] by replacing standard convolution with CombiConv.
For our experiments, we use m2 = −4.0 and λ = 5.113 (in the vicinity of critical regime) for each
lattice size L = 4, 8 and the dimension of theory d = 2, 3, 4. We show results from L = 8 in this
article.

The left panel of fig. 3 shows the history of acceptance rate as a function of training steps for two
dimensions. Light blue, orange, and green lines are results for the standard convolution, CombiConv-
b, and CombiConv-a, respectively. Improvement by CombiConv is relatively small in 2 dimensions,
but CombiConv-a achieves the highest acceptance rate after 500 training steps.

The right panel of fig. 3 shows the history of acceptance rate in training steps for three dimensions.
Light blue, orange, green, violet, and ocher line are results for the standard three-dimensional
convolution, CombiConv-b (d = 3, k = 1), CombiConv-a (d = 3, k = 1), CombiConv-b (d =
3, k = 2), CombiConv-a (d = 3, k = 2), respectively. In three dimensions, CombiConv improves the
acceptance rate significantly. Moreover, results with k = 1 show the highest acceptance rate.

We also perform calculations in four dimensions. We do not perform a simulation with the standard
four-dimensional convolution since the library does not have it. In addition, due to the lack of
numerical resource, we do not perform calculations with CombiConv-a. Figure 4 shows the history of
acceptance rate in training steps for four dimensions. Light blue, orange, and green lines are results
for CombiConv-b (d = 4, k = 1), CombiConv-b (d = 4, k = 2), CombiConv-b (d = 4, k = 3),
respectively. As in the three-dimensional case, k = 1 shows the best performance.
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Figure 3: Acceptance rate for L = 8 in d = 2, 3. Label without 2C1 is the standard 2-dimensional
convolution and label without activation_last is CombiConv-b and the other is CombiConv-a. (left)
2-dimensional field theory. (right) 3-dimensional field theory. Label without 3Ck (k = 1, 2) is the
standard 3-dimensional convolution.

Figure 4: Acceptance rate for L = 8 in d = 4. No plot for the 4-dimensional conventional convolution
and only alternative proposals (CombiConv-b) are shown (see main text).

4 Summary and Conclusion

In this work, we propose a novel way to improve the acceptance rate of the flow-based sampling
algorithm with a decomposed convolutional layer. We construct d-dimensional convolution from
k(< d)-dimensional convolution (CombiConv), which has fewer parameters in each layer than the
standard one. CombiConv enables us to perform the convolutional operation using convolutional
layers in the lower dimension, which is optimally implemented in many libraries. We perform
numerical experiments for the scalar field theory with the flow-based sampling algorithm with
CombiConv in d = 2, 3, 4. We find that the algorithm with CombiConv shows a higher acceptance
rate for d = 2, 3 than the standard one, and CombiConv with k = 1 shows the best performance for
d = 2, 3, 4.

The impact statement

This work provides a novel way to improve the acceptance rate (approximately efficiency) of the
flow-based sampling algorithm for quantum field theory on the lattice in four dimensions. Metropolis-
type algorithms, including the flow-based sampling algorithm, could decrease in higher dimensions
because the acceptance rate depends on active degrees of freedom in the system. In addition, most
libraries for machine learning do not provide a convolutional layer for more than three dimensions
publicly. Our framework, associated with the global symmetry of the system, enables to use of an
optimized library for lower dimensional convolution. Moreover, the implementation convenience and
our framework show a higher acceptance rate in the Monte-Carlo calculations with the flow-based
sampling algorithm.
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A Appendix: Lattice field theory and QCD

Here let us briefly review lattice field theory and lattice QCD. In addition, we note the necessity of an
efficient sampling method for it.

Quantum field theory is a fundamental language to describe quantum and relativistic elementary
particles. In the path integral formalism in the euclidean spacetime, expectation values can be
evaluated by the following integral formula,

⟨O⟩ = 1

Z

∫
Dϕ e−S[ϕ] (2)
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where ϕ(x) ∈ R and x ∈ R4 is a real classical field (roughly speaking, it is a function on R4).
S[ϕ] =

∫
d4x(−ϕ∂2ϕ/2 + V (ϕ). The integral measure Dϕ is

Dϕ =
∏
x∈R4

dϕ(x). (3)

This integral measure is not well defined. Here we descretize the system as,

∂2ϕ(n) =
1

a2

d∑
µ=1

[ϕ(an+ aµ̂) + ϕ(an− aµ̂)− 2ϕ(an)] (4)

We get (1). We remark that we set a = 1 in the main text for notational simplicity. In this case, a → 0
limit is rephrased as a limit of other parameters in the system. To this end, we get field theory on the
lattice. If we define the system in the finite box with a discretized one, the system has a finite number
of degrees of freedom, and we can calculate the integral with computers. This finite discretization
size is called lattice spacing, regarded as a cutoff for a high energy regime in the momentum space.
We remark that, we can reduce the descretization error by taking small a in (4).

If we consider a function for Uµ(n) ∈ SU(3) where µ = 1, 2, 3, 4 and n is a coordinate on the lattice,
instead of ϕ(n), (1) is expectation values for lattice QCD. Uµ(n) is defined on links (bonds) in a
four-dimensional hypercube, and Uµ(n) is understood as gluons in elementary particles. Throughout
of this paper, we focus on scalar field theory on the lattice.

In practice, we evaluate the expectation value using a numerical integration scheme. However, the
trapezoidal integration or its improved one does not work because the dimensionarity of integration is
too high (typically it is like Ld = 10, 000 in (1) for d = 4 in practical cases and the error is roughly
proportional to O(n−1/Ld

) for n pieces of trapezoid). Markov-Chain Monte Carlo (MCMC) does
work for any number of integral variable, even more than 10, 000. MCMC generates samples from the
probability distribution, which has high probability. For example, if we integrate with exp[−(x−µ)2]
with respect to x, samples of MCMC are mostly from a regime around x ≈ µ. The integration error
from MCMC is typically O(1/

√
Nsmp) where Nsmp is the number of independent samples.

For lattice field theory, we use HMC (Hamiltonian/Hybrid Monte Carlo), a sophisticated MCMC for
continuous variables. HMC is succeeded property of MCMC, and the integration error from MCMC
is typically O(1/

√
Nsmp) where Nsmp is the number of independent samples.

HMC applying the critical regime of the system has a problem called critical slowing down. Samples
are generated with the equation of motion for an augmented physical system, but the equation shares
the criticality of the original system. Thus, generated samples are correlated, and this makes the
efficiency of MCMC down. This means that, if we fix the numerical integration time, the statistical
error from MCMC increases. The continuum limit, namely a → 0 limit, is a typical example of the
critical regime. So we have a dilemma. To reduce the discretization error, we want to shrink a, but
it increases the statistical error from MCMC and vice versa. To solve this problem, we need a new
algorithm with milder critical slowing.

7


	Introduction
	Preliminary
	Combinational-convolution
	Scalar field theory

	Results
	Summary and Conclusion
	Appendix: Lattice field theory and QCD

