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Abstract

Exploring an unknown physical environment in a sample-efficient and compu-
tationally fast manner is a challenging task. In this work, we introduce an ex-
ploration policy based on neural networks and experimental design. Our policy
maximizes the one-step-ahead information gain on the model, which is computed
using automatic differentiation, and leads us to an online exploration algorithm re-
quiring small computing resources. We test our method on a number of nonlinear
physical systems covering different settings.

1 Introduction

Building a faithful model of a physical system is essential for designing an efficient control law in
a model-based approach. In this regard, active system identification — or exploration — aims at
exciting the system to collect informative data, in order to estimate the system in a sample-efficient
manner [1, 2]. In many cases, an exact model is known only for part of the dynamics, either because
the system is too complex to derive an analytical model, or simply because some effects that one
wishes to take into account are unknown. Since little is known about those effects a priori, the
unknown component is assumed to be a nonlinear function of the state. An example would be air
friction on a drone, for which finding a model from physical principles is notoriously difficult [3].
We focus on dynamical systems, where the state x and the input u are governed by an equation of
the form:

dx

dt
= f(x, u). (1)

What one observes in practice are discrete noisy observations of the dynamics (1):

xt+1 = xt + dtf(xt, ut) + wt, 0 ≤ t ≤ T − 1, (2)

where dt is a known time step, xt ∈ Rd is the state vector, wt ∼ N (0,dt σ2Id) is a normally
distributed isotropic noise with known variance σ2, and the control variables ut ∈ Rm are chosen
by the controller with the constraint ‖ut‖2 ≤ γ. Our aim is to learn the flow f with a parametric
function fθ, whose parameters are gathered in a vector θ ∈ Rq . The goal of active system identifi-
cation is to choose inputs (ut) that make the trajectory as informative as possible for the estimation
of f with fθ, with the input ut chosen at time t using the past observations. The computational
process of choosing the inputs is called planning. Typically, we want to derive a planning objective
G(u) measuring the information gain of the input u, and choose ut as the input maximizingG under
the amplitude constraint. Since we want our algorithm to run online, we attach importance to the
computational cost of planning. Typically, gradient-based methods are often too slow for practical
uses.

Neural model for dynamics In our active exploration paradigm, a good model for such a non-
linear map should fulfill three conditions. First, it should be expressive enough to learn the target

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



function. Second, it should be able to learn efficiently from the data online. Third, it should have a
mathematical measure of uncertainty to guide the choice of inputs, which should be cheap to eval-
uate and optimize, so that an exploration algorithm could use it to run online. Neural networks are
a popular and powerful tool for modelling nonlinear functions, and they meet all of the three condi-
tions. Neural nets are expressive and can be trained online with a constant memory cost [4]. As for
measuring uncertainty, the optimal design theory provides an information-theoretic criterion [5, 6],
for which we propose an efficient optimization algorithm (see Section 2). A general online neu-
ral exploration algorithm is summarized in Algorithm 1. In the case of linear dynamics, an online
exploration algorithm based on optimal design input design for classical linear least squares has
recently been proposed [7]. Our work can be seen as a generalization to nonlinear dynamics.

Contributions Building on the theory of optimal design for neural networks, we define a D-
optimal planning objective for active neural exploration. We derive a tractable approximation of
this cost function, which allows us to design an online exploration algorithm. The sample-efficiency
of our method is demonstrated on various nonlinear physical systems and its performance is com-
pared to several baselines.

Related work The pure exploration task has recently attracted much interest in the fields of con-
trol and reinforcement learning. Several methods have been proposed to learn the dynamics (or
transition function) and the uncertainty of the learner, including Gaussian processes [8] (which have
the drawback of requiring a quadratic memory cost), Random Fourier Features [9], and an ensemble
of neural networks [10]. Experimental design approaches to identification of linear dynamical sys-
tems are studied in [7] and [11]. A theoretical study for active nonlinear system identification can
be found in [12]. The extension of optimal design of experiments to neural networks is proposed
in [5] for static systems, and in [13] for dynamical systems with offline training. More recently, this
uncertainty measure for neural nets was used for neural contextual bandits [14].

2 Neural D-optimal exploration

Classical D-optimal design In our pure exploration framework, the choice of inputs for our con-
trolled dynanics should be guided by some measure of uncertainty about our model fθ. In the case
of a scalar linear map fθ(z) = z · θ, the classical optimal design theory provides an information-
theoretic criterion measuring the volume of the confidence ellipsoid for the parameter vector θ and
called D-optimality [15, 16]:

max
(zs)

log det
(
E[MT ]

)
with Mt =

t−1∑
s=0

zszs
> ∈ Rd×d. (3)

Linearized optimal design The D-optimality criterion can be extended to non-linear models, as
follows [5]. Assuming that the parameter vector is close to the convergence value θ?, we can lin-
earize the target function to the first order in θ:

fθ(z, θ) ' fθ(z, θ?) + Jθ(z, θ?)× (θ − θ?) with Jθ(z, θ) :=
∂fθ
∂θ

(z, θ) ∈ Rd×q. (4)

The evaluations at θ? can be approximated with those at the current estimate θt. In
this linearization regime, the learning of f reduces to ordinary least squares for θ.
Specifically, an observation at a point z corresponds to d distinct covariates of dimen-
sion q: gkθ (z, θ) = ∇θfkθ (z, θ) ∈ Rq, 1 ≤ k ≤ d, which are concatenated into the Jaco-
bian Jθ(z, θ). Taking D-optimality for our information gain criterion, we should solve

max
(zs)

log det (E[MT ]) with Mt =

t−1∑
s=0

Jθ(zs, θs)
>
Jθ(zs, θs) ∈ Rq×q. (5)

In our dynamic setting, we want to derive an optimization objective for planning from the
information-theoretic criterion (5). Since we want to obtain an online policy, we focus on a
one-step-ahead objective, which yields a greedy approximation of (5). Still, greedy planning
in our dynamic setting has been found to perform well in practice [6, 7]. We define the next-
step prediction of the state as x(u) = xt + dtfθ(xt, u), and consider J as a function of x as fol-
lows: J(x) = Jθ(x, u = 0; θ). We can then define a one-step-ahead D-optimal information gain.

2



Definition 1 (D-optimality information gain). One-step-ahead D-optimality yields the following
objective, which should be maximized under the quadratic constraint ‖u‖2 ≤ γ2:

GD(u) = log det
[
Mt + J

(
x(u)

)>
J
(
x(u)

)]
. (6)

The maximization of GD is not straightforward because of the determinant and because J is a
nonlinear function of x. To make D-optimality tractable, we linearize J(x), which amounts to
linearizing f to second order in θ and x. Intuitively, since we are planning between t and t+ dt the
corresponding variation in x is small so it is reasonable to use linear approximations.
Proposition 1. Let 1 ≤ k ≤ d, and let us denote M = Mt ∈ Rq×q , D = ∂gkθ/∂x ∈ Rq×d,
and B = dt ∂fθ/∂u ∈ Rd×m, with the derivatives evaluated at z̄ := z(u = 0;xt, θ). Linearization
of our D-optimality objective (6) with respect to x to first order in dt for the k-th component of the
dynamics yields the following optimization problem:

max
u∈Rm

u>Qu− 2v>u

subject to ‖u‖22 = γ2,

with Q = B>D>M−1DB ∈ Rm×m, v = −B>D>M−1g ∈ Rm.

(7)

Problem (7) can be solved efficiently at the cost of a root search and a m×m eigenvalue decompo-
sition [7]. Algorithm 2 summarizes the computation of the D-optimal input using our method. Note
that we recover the D-optimal exploration algorithm of [7] in the case of linear dynamics.

Algorithm 1 Online neural exploration

input neural model fθ, policy π, time
horizon T , time-step dt, learning rate η
output dynamics model fθ
for 0 ≤ t ≤ T − 1 do

choose ut = πt(x0:t, u0:t−1; fθ)
observe xt+1 = xt + dt f(xt, ut)
compute the loss
`t = ‖fθ(xt, ut)−(xt+1−xt)/dt‖22

update θ ← θ − η∇`t(θ)
end for

Algorithm 2 Neural D-optimal planning

inputs current state xt, current model fθ, Gram ma-
trix Mt ∈ Rq×q , time step dt
output control ut
define x̄ = xt + dt fθ(xt, u = 0)
choose 1 ≤ k ≤ d and define g as the k-th row of J
compute the derivatives J(x̄), g(x̄), D(x̄) and B(x̄)
compute Q and b
optimize ut ∈ argmax

‖u‖22=γ2

u>Qu− 2v>u.

return ut

3 Exploration of physical systems

We introduce physical systems on which we expriment our exploration methods. Some of them are
inspired by classical control environments of the OpenAI Gym [17]. In order to be more realistic,
we take into account friction forces, which results in stable nonlinear dynamics. When controlling
a physical system, friction can change the behaviour of the system and thus must be taken into
account [18]. Moreover, friction forces are typically nonlinear and do not have a theoretical model,
which motivates a nonlinear system identification approach.

Physical systems Our nonlinear environments are the pendulum (d = 2,m = 1), the cartpole with
linear friction (d = 4,m = 1) [19], the damped robot arm (d = 4,m = 2) [20] and the quadrotor
with nonlinear friction (d = 6,m = 2) [21]. The different agents learn the dynamics with par-
tial knowledge of f . Typically, the learner knows a priori that the dynamics is of second order,
and knows some components of the forces, such the controller action. The other forces, including
friction, are unknown and learned online.

Baselines and oracles We confront our D-optimal exploration with several baselines. First, a ran-
dom policy returns normally distributed inputs with maximal energy ut ∼ N

(
0, (γ2/m)Id

)
. Sec-

ond, a naive criterion for our inputs is to impose regular spacing of the trajectory points in the phase
space. We hence propose a policy that maximizes G(u) =

∑
s≤t ‖x(u)− xs‖2 by gradient descent

through the model prediction x(u), which we call uniform exploration. Third, we define a peri-
odic policy that excites the eigenmode ω0 of the systems and returns for example ut = γ sin(ω0t)
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Figure 1: Evaluation loss curves for different environments against time t averaged over 100 trials.
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Figure 2: D-optimal sample trajectories and inputs. Left and middle. Phase space trajectories, for
different agents. Right. Spectral density of the D-optimal inputs in the cartpole environment.

when m = 1. Near-resonance inputs yield large amplitude states in a periodic system, but require
knowledge of the system’s eigenmode (and hence of part of its dynamics) in advance. Finally, an
oracle for the pendulum system knows the dynamics down to the physical parameters (mass, length,
gravity, and friction coefficient), and hence learns them by ordinary least squares, with D-optimal
inputs with respect to this parametrization.

Experimental setup For each physical system, we fix a neural architecture fθ modelling the dy-
namics and run the exploration Algorithm 1 for the different policies. The performance of an agent
in an environment is measured by the L2 norm ‖fθ − f‖2 of the learned model evaluated on a
grid covering typical z values. The neural nets for fθ have two hidden layers, randomly initialized
weights, a width of 16 and are trained using the Adam optimizer [22]. Our experiments are run on a
laptop CPU. Our code is available at https://github.com/MB-29/exploration.

Results The results are shown in Figures 1 and 2. The D-optimal agent is more sample-efficient
than baselines, and rivals and sometime outperforms oracles. The phase space trajectories show that
the D-optimal policy yields wide and spaced states. In the cartpole environment, the model learned
by the D-optimal policy results in quasi periodic inputs, with a frequency close to the pendulum’s
eigenmode. These results show that the D-optimal agent seeks large amplitude trajectories that are
informative for the underlying neural model.

4 Conclusion and future works

We studied the problem of identifying unknown physical systems and proposed an exploration policy
based on optimal design for neural networks. Our experiments show that this approach is sample-
efficient and yields informative trajectories. In the future, it would be interesting to study the com-
putational complexity of the planning algorithm, whose cost is dominated by the computation of the
Jacobian and its derivative and might get big in large dimension. Keeping in mind that the purpose of
exploration is to serve an exploitation objective, a natural idea would be to test our method on down-
stream model-based classical control tasks and compare it with other state-of-the-art approaches.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the pa-

per’s contributions and scope? [Yes] The algorithm is derived in Section 2 and the
experiments are presented in Section 3

(b) Did you describe the limitations of your work? [Yes] Computational limitations are
discussed in Section 4.

(c) Did you discuss any potential negative societal impacts of your work? [No] We see
no potential negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The only as-

sumption pertaining to Proposition 1 is differentiability of the model and it is verified
by neural networks in general.

(b) Did you include complete proofs of all theoretical results? [No] Proof of Proposition 1
is not provided in this workshop version, it will be provided in the full paper.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See the
footnote in the abstract.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The architecture we use is described in Section 3. Additional
details about the environments and experiments are included in the full paper, not in
this extended abstract.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Our plots have error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the experimental setup in
Section 3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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