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Abstract

Incorporating the Hamiltonian structure of physical dynamics into deep learning
models provides a powerful way to improve the interpretability and prediction
accuracy. While previous works are mostly limited to the Euclidean spaces, their
extension to the Lie group manifold is needed when rotations form a key compo-
nent of the dynamics, such as the higher-order physics beyond simple point-mass
dynamics for N -body celestial interactions. Moreover, the multiscale nature of
these processes presents a challenge to existing methods as a long time horizon is
required. By leveraging a symplectic Lie-group manifold preserving integrator, we
present a method for data-driven discovery of non-Newtonian astronomy. Prelimi-
nary results show the importance of both these properties in training stability and
prediction accuracy.

1 Introduction

Point
Rigid
Lie T2

Figure 1: One planet’s orbit
around a star: rigid body correc-
tion results in a precession, i.e.
slow rotation of the orbital axis.
Our method, ‘Lie T2’, learns V
from data and predicts a trajec-
tory that matches the ground truth
with the rigid body potential.

Deep Neural Networks (DNN) have been demonstrated to be
effective tools for learning dynamical systems from data. One
important class of systems to be learned have dynamics described
by physical laws, whose structure can be exploited by learning the
Hamiltonian of the system instead of the vector field [1, 2]. An
appropriately learned Hamiltonian can endow the learned system
with properties such as superior long prediction accuracy [3] and
applicability to chaotic systems [3–5].

To learn continuous dynamics from discrete data, one important
step is to bridge the continuous and discrete times. Seminal
work initially approximated the time derivative via finite differ-
ences and then matched it with a learned (Hamiltonian) vector
field[1, 2]. Recent efforts avoid the inaccuracy of finite difference
by numerically integrating the learned vector field. Especially
relevant here is SRNN [6], which uses a symplectic integrator
to ensure the learned dynamics is symplectic (a necessity for
Hamiltonian systems). Although SRNN only demonstrated learning separable Hamiltonians, break-
through in symplectic integration of arbitrary Hamiltonians [7] was used to extend SRNN [8]. Further
efforts on improving the time integration error have also been made [9–11]. Meanwhile, alternative
approaches based on learning a symplectic map instead of the Hamiltonian also demonstrated efficacy
[3, 12], although these approaches have not been extended to non-Euclidean problems.

∗Work was done while Oswin was at Georgia Tech.
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In fact, one relatively under-explored area is learning Hamiltonian dynamics on manifolds like the Lie
group manifold family2. One important member of this family is SO(n), which describes isometries
in Rn and is important for, e.g., dynamical astronomy. The evolution of celestial bodies correspond
to a mechanical system, and the 2- and 3-body problems have been a staple problem in works on
learning Hamiltonian (e.g., [1, 3, 6, 15]); however, the Newtonian (point-mass) gravity considered is
already well understood. Practical problems in planetary dynamics are complicated by higher-order
physics such as planet spin-orbit interaction, tidal dissipation, and general relativistic correction.
While it is unclear what would be a perfect scientific model for these effects, planetary rotation is a
necessary component to account for spin-orbit interaction and tidal forcing, creating an SO(3)⊗N

component of the configuration space. To learn these physics from data, we need to learn on the Lie
group.

Rigid body dynamics also play important roles in other applications such as robotics. In a seminal
work [16], Hamiltonian dynamics on SO(3) are used to learn rigid body dynamics for a quadrotor.
In that work, Runge-Kutta 4 integrator is used. Consequently, the method is applicable to short
time-horizon (see Sec.3 and last paragraph of Sec.2).

For our problem of learning non-Newtonian astronomy, the time-horizon has to be long. Hence,
we use a different approach by leveraging a Lie-group preserving symplectic integrator. Structure-
preserving integration of dynamical systems on manifolds has been extensively studied in literature,
for example for Lie groups [17–21] and more broadly, geometric integration [22–25].

In summary, we propose a deep learning methodology for performing data-driven discovery of
non-Newtonian astronomy. By leveraging the use of a symplectic Lie-group manifold preserving
integrator, we show how a non-Euclidean Hamiltonian can be learned for accurate prediction of
non-Newtonian effects. Moreover, we provide insights that show the importance of both symplecticity
and exact preservation of the Lie-group manifold in training stability.

2 Method

Given observations of a dynamically evolving system, our goal is to learn the physics that governs its
evolution from the data. Denote by (qk,l,Rk,l,pk,l,Πk,l)

K
k=1, l ∈ [L] a dataset of snapshots of L

continuous-time trajectories of a system with N interacting rigid bodies. That is,

(qk,l,Rk,l,pk,l,Πk,l) =
(
ql(k∆t),Rl(k∆t),pl(k∆t),Πl(k∆t)

)
,

where ql(t),Rl(t),pl(t),Πl(t) is a solution of some latent Hamiltonian ODE to be learned corre-
sponding to mechanical dynamics on T ∗SE(3)⊗N . ∆t is a (possibly large) observation timestep,
R ∈ SO(3)⊗N is the rotational configuration of the N rigid bodies, and Π ∈ so(3)⊗N denotes
each’s angular momentum in their respective body frames.

Importantly, since the configuration spaceQ = SE(3)⊗N is not flat, the mechanical dynamics are not
given by q̇ = ∂H

∂p , ṗ= −∂H
∂q for some HamiltonianH that depends on the generalized coordinates

q ∈ Q and generalized momentum p ∈ T ∗
qQ. Instead, the equations of motion can be derived via

either Lagrange multipliers [20, 26] or a Lie group variational principle [20, 27], which will be

q̇i = pi/mi, (1a)

ṗi = −
∂V

∂pi
+ Fpi

(1b)

Ṙi = RiĴ
−1
i Πi (1c)

Π̇i = Πi × J−1
i Πi −

(
R⊺

i

∂V

∂Ri
−
(

∂V

∂Ri

)⊺

Ri

)∨
+ FΠi

(1d)

assuming a physical HamiltonianH(q,R,p,Π) =
∑N

i=1
1
2p

T
i pi/mi+

∑
i
1
2Π

T
i J

−1
i Πi+V (q,R)

that sums total (translation and rotational) kinetic energy and interaction potential V , where
mi,Ji denote the mass and inertial tensor of the ith body, and Fp, FΠ are forcing terms to model
nonconervative forces. Πi ∈ R3 is a vector, ∧ is the map from R3 to Skew3 and ∨ is its inverse ([20]
for more details). By learning the potential V , external forcing Fp and torque FΠ, we can learn the
physics of the system.

2We note extensions to include holonomic constraints in [13] and to handle contact in [14]).
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2.1 Machine Learning Challenges Posed by Dynamical Astronomy

We study this setup because it helps answer scientific questions like: what physics governs the
motions of celestial bodies, such as planets in a planetary system? The leading order physics is
of course already well known, namely these bodies can be approximated by point masses that are
interacting through a 1/r gravitational potential. However, planets are not point masses, and their
rotations matter because they shape planetary climates [28, 29] and even feedback to their orbits
[30]. This already starts to alter V even if one only considers classical gravity. For example, the
gravitational potential V for interacting bodies of finite sizes should be V (q,R) =

∑
i<j Vi,j , where

Vi,j(q,R) =

∫
Bi

∫
Bj

− Gρ(xi)ρ(xj)

∥qi +Rixi − qj −Rjxj∥
dxi dxj = − Gmimj

∥qi − qj∥︸ ︷︷ ︸
Vi,j,point

+O

(
1

∥qi − qj∥2

)
︸ ︷︷ ︸

Vi,j,resid

.

(2)
Working with the full potential is complicated since Bi is not known and the integral is not analytically
known. Can we directly learn Vresid from time-series data?

Classical gravity (i.e. Newtonian physics) is not the only driver of planetary motion — tidal forces
and general relativity (GR) matter too. The former provides a dissipation mechanism and plays
critical roles in altering planetary orbits [31, 32]; the latter doesn’t need much explanation and
has been demonstrated by, e.g., Mercury’s precessing orbit [33]. Tidal forces depend on celestial
bodies’ rotations [34] and thus is a function of both q,R. GR’s effects cannot be fully characterized
with classical coordinates q,R,p,Π, but post-Newtonian approximations based purely on these
coordinates are popular [35]. Can we learn both purely from data if we did not have theories for
either?

In addition to the scientific questions, there are also significant machine learning challenges:

Multiscale dynamics. Rigid-body correction (Vresid), tidal force, and GR correction are all much
smaller forces compared to point-mass gravity. Consequently, their effects do not manifest until long
time. Thus, one challenge for learning them is that the dynamical system exhibits different behaviors
over multiple timescales. It is reasonable to require long time series data for the small effects to
be learned; meanwhile, when observations are expensive to make, the observation time step ∆t can
be much longer than the smallest timescales. Can we still learn the physics in this case? We will
leverage symplectic integrator and its mild growth of error over long time [7, 26] to provide a positive
answer.

Respecting the Lie group manifold. However, even having a symplectic integrator is not enough
because the position variable of the latent dynamics (i.e. truth) stays on SE(3)⊗N . If the integrated
solution falls off this manifold such that R⊺R = I no longer holds, it is not only incorrect but likely
misleading for the learning of V (q,R). Popular integrators such as forward Euler, Runge-Kutta 4
(RK4) and Leapfrog [1, 6, 36] unfortunately do no maintain the manifold structure.

2.2 Learning with Lie Symplectic RNNs

Our method can be viewed as a Lie-group generalization of the seminal work of SRNN [6], where a
good integrator that is both symplectic and Lie-group preserving is employed as a recurrent block.

Lie T2: A Symplectic Lie-Group Preserving Integrator. To construct an integrator that achieves
both properties, we borrow from [20] the idea of Lie-group and symplecticity preserving splitting, and
split our Hamiltonian asH = HKE+HPE+Hasym, which contains the axial-symmetric kinetic energy,
potential energy and asymmetric kinetic energy correction terms. This enables computing the exact
integrators ϕ[KE]

t , ϕ
[PE]
t and ϕ

[asym]
t (see App B for details). We then construct a 2nd-order symplectic

integrator Lie T2 by applying the Strang composition scheme. To account for non-conservative
forces, the corresponding non-conservative momentum update ϕ[force] : (p,Π)← F (q,R,p,Π) is
inserted in the middle of the composition [20]. This gives ϕ[Lie T2]

h for stepsize h as

ϕLie T2

h := ϕ
[KE]
h/2 ◦ ϕ

[PE]
h/2 ◦ ϕ

[asym]
h/2 ◦ ϕ

[force]
h ◦ ϕ

[asym]
h/2 ◦ ϕ[PE]

h/2 ◦ ϕ
[KE]
h/2 (3)

While the implementation of our integrator in the case of dynamical astronomy is specific to the
SE(3)⊗N manifold, we note that the use of a splitting method to construct Lie-group preserving
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(q1, R1, p1,Π1)

(q0, R0, p0,Π0)

...

ϕθ,Lie T2

h
. . . ϕθ,Lie T2

h

ϕθ,Lie T2

h
. . . ϕθ,Lie T2

h

H layer SRNN

(q̂1, R̂1, p̂1, Π̂1)

(q̂2, R̂2, p̂2, Π̂2) L(θ)

Figure 2: Inputs are fed through a recurrent layer with Lie T2. Prediction error is used as a loss on θ.

integrators can be applied to construct symplectic integrators for any Hamiltonian system defined on
a Lie group [26].

A Recurrent Architecture for Nonlinear Regression. Given the simplicity of Vpoint, we assume
this is known and learn Vresid and F θ with multi-layer perceptron (MLP) V θ

resid and F θ without
assuming any pairwise structure (see App C for discussion). We then use ϕθ,Lie T2 to integrate
dynamics forward, where θ denotes the dependence on the networks. However, when the temporal
spacing between observations ∆t is large, using a single ϕθ,Lie T2

∆t will result in large errors for the
fast timescale dynamics. Instead, we compose ϕθ,Lie T2

h H times as (q̂k+1,l, p̂k+1,l) = ϕθ,Lie T2

h ◦
· · · ◦ ϕθ,Lie T2

h (qk,l,pk,l), where H = h/∆t ∈ Z determines the integration stepsize h, and we use
q = (q,R) and p= (p,Π) to denote the position and momentum related terms respectively. We
perform training by minimizing the following empirical loss over random minibatches of size Nb

L(θ) := 1

Nb K

Nb∑
l=1

K∑
k=1

{∥∥qk,l − q̂θ
k,l

∥∥2
2
+
∥∥pk,l − p̂θ

k,l

∥∥2
2

}
(4)

Note that we do not assume access to the true derivatives q̇k,j and ṗk,j used in the loss function of
some works [1, 37, 38]. The forward pass of the training process is summarized in Fig. 2 (see App C
for details).

Benefit. Learning an accurate V θ, F θ requires accurate numerical simulation which also leads to
a trainable model. Without preservation of the manifold structure, training can lead to ‘shortcuts’
outside the manifold that seemingly match the data but completely mislead the learning. Symplecticity
also plays a vital role in controlling the long time integration error — under reasonable conditions, a
pth-order symplectic integrator has linear O(∆thp) error bound, whereas a pth-order nonsymplectic
one has an exponential O(eC∆thp) error bound [7, 26]. While these bounds do not matter for small
∆t, they are significant for multiscale problems where ∆t is macroscopic but h is microscopic.
Consequently, improving error estimates for a nonsymplectic integrator by reducing h makes the
RNN exponentially deep — this often renders training difficult [39] and is not desirable.

3 Results
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Figure 3: Results on TRAPPIST-1 with short
data separation. Top: SO(3) manifold er-
ror. Bottom: Hamiltonian error over the inte-
grated trajectory. Only Lie T2 achieves low
errors in both metrics.

We aim to answer two questions. Q1 Can we learn
multiscale physics? Q2 How important are symplec-
ticity (S) and Lie-group preservation (L) for learn-
ing? The closest baseline for our problem is work of
[16], which learns short timescale rigid-body Hamil-
tonian dynamics for robotics. Placed in our frame-
work, their work corresponds to using RK4 for the re-
current block, which is neither S nor L. Therefore, to
investigate Q2, we vary the choice of integrator in our
framework as follows: Normal: Explicit Euler, RK4.
S: Verlet. L: Lie RK2(CF2) and Lie RK4(CF4) [21].
We leave the precise details to Apps C and D.

Toy Two-Body Problem. We consider an illustrative
two-body problem to demonstrate the effects of Vrigid.
In Fig. 1 ‘Point’ & ‘Rigid’ denote exact solutions for
a point-mass and rigid-body potential, and ‘Lie T2’
the prediction of our method based on a V learned
from data. Compared to ‘Point’, ‘Rigid’ induces an
apsidal precession (rotation of the orbital axis) due to spin-orbit couplings. Our method successfully
predicts this interaction and matches the trajectory of ‘Rigid’.
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Table 1: TRAPPIST-1 with long data separation
evaluated after 500 integrator steps. All methods
except for Lie T2 diverge during training. ∥∆R∥
is computed as the geodesic between the predicted
and true rotations (see App E for details).

∥∆q∥2 ∥∆R∥ ∥∆ṗ∥2 ∥∆Π̇∥ 2

No Corrections 8.6e−6 1.6 3.3 4.7e−2
Euler, RK4,

Verlet, Lie RK2,
Lie RK4

∞ ∞ ∞ ∞

Lie T2 (Ours) 6.1e−8 4.0e−2 1.2e−1 3.1e−3

Table 2: TRAPPIST-1 with short data separation evaluated
after 500 integrator steps.

∥∆q∥2 ∥∆R∥ ∥∆ ∂V
∂q

∥
2

∥∆ ∂V
∂R

∥
2

Euler ∞ ∞ ∞ ∞
RK4 1.6e−5 3.9e−1 1.5e+3 7.9e−1

S Verlet 8.6e−8 2.0e+7 1.6e+1 4.1e−1
LLie RK2 5.3e−5 3.3e−1 2.6e+2 7.6e−1
LLie RK4 1.6e−5 3.5e−1 1.5e+3 8.4e−1

SLLie T2 (Ours) 8.0e−8 2.4e−1 1.6e+1 4.0e−1

We next test our method by learning the dynamics of the TRAPPIST-1 system [40] which consists of
seven earth-sized planets and is notable for potential habitability for terrestrial forms of lives.

TRAPPIST-1, Large ∆t. To answer Q1, we choose a large data timestep ∆t = 2.4e−3 yr. The
closest planet has an orbital period of ∼ 2∆t (4.1e−3 yr), while the rigid body correction, tidal
force and GR correction act on much longer scales. Only Lie T2 successfully trains. All other
methods diverge during training (denoted by∞) despite attempts at stabilization with techniques such
as normalization (LayerNorm [41], GroupNorm [42]). Reducing h improves integration accuracy,
but increases the RNN depth and makes training more unstable. We compare with the solution
for point-mass potential only (No Correction). Our method reduces the error up to two orders of
magnitude in measures of trajectory error and potential gradients (Table 1). We evaluate each method
by computing the norm of the error of the predicted positions and forces. The geodesic on SO(3) is
used to compute errors between rotations ∥∆R∥. See App E for more details on how each metric is
defined and computed.

TRAPPIST-1, Small ∆t. To gain more insight on Q2, we shrink ∆t until almost all methods can
converge and only consider conservative forces (i.e. no tidal force or GR). The mean errors in the
predicted trajectory and derivatives of the learned potential V after 500 integrator steps are shown in
Table 2. Both S methods achieve small errors in position related terms. Verlet has a large rotational
error since it does not integrate on the rotation manifold. L methods achieve lower rotational errors
but are worse elsewhere. Lie T2 being both SL achieves the lowest error on both fronts.

4 Broader Impact

Our work presents an approach for learning multiscale, higher order physics on the Lie-group
manifold in the context of non-Newtonian astronomy. This research, though directly applicable to
astronomy, can also be applied to perform data-driven discovery multiscale phenomena on Lie groups
in other fields.
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A Rigid Body Equations of Motion

We present two derivations from Chen et al. [20]. The first derivation derives a constrained Hamilto-
nian system via Lagrange multipliers, while the second uses a variational principle for mechanics on
Lie groups. We also note that the same equations can be derived via the use of the Port-Hamiltonian
framework as in Duong and Atanasov [16], though they choose to express the linear momentum
coordinates in the moving body frame rather than the inertial frame as is done in this work.

A.1 Constrained Hamiltonian System

Since the manifold SE(3)⊗N is a product space of the individual manifolds SE(3), we consider
the latter for brevity and drop indices i for each body. Furthermore, SE(3) can be seen as the
product space of R3 × SO(3) for which the former is unconstrained, so we focus our attention
on the latter. We can view R to be in the embedded Euclidean space R3×3 ←−↩ SO(3) and use
R ∈ SO(3) := h(R) = {R⊺R − I3×3 = 03×3} as a holonomic constraint. Using Lagrange
multipliers Λ [26] for the constraint h gives us the following Lagrangian

L(R, Ṙ) =
1

2
Tr
[
ṘJdṘ

]
− V (R)− 1

2
Tr [Λ⊺(R⊺R− I3×3)] (A1)

where Jd denotes the nonstandard moment of inertia [20, 27]

Jd :=

∫
B
ρ(x)xx⊺ dx , Jd = Tr[J]I3×3 − J, J = Tr[Jd]I3×3 − Jd, (A2)

and

Λ =

[
λ1 λ4 λ6

λ4 λ2 λ5

λ6 λ5 λ3

]
∈ R3×3 (A3)

is a 6-dimensional symmetric matrix of Lagrange multipliers. Performing the Legendre transform for
(A1) gives us the conjugate rotational momentum P as

P =
∂L(R, Ṙ)

∂Ṙ
= ṘJd (A4)

and corresponding Hamiltonian

H(R,P) =
1

2
Tr
[
PJd

−1P
]
+ V (R) +

1

2
Tr [Λ⊺(R⊺R− I3×3)] (A5)

The constraint for P can be obtained by taking the time derivative of h(R) = 0 according to Haier
et al. [22], i.e., J−1

d P⊺R+R⊺PJ1
d = 03×3. Hence, our equations of motion so far looks like
Ṙ =

∂H

∂P
= PJ−1

d

Ṗ = −∂H

∂R
= −∂V

∂R
−RΛ

(A6)

on the manifold

M := {(R,P)|R⊺R = I3×3, J−1
d P⊺R+R⊺PJ−1

d = 03×3 (A7)

Let Ω̂ = R⊺Ṙ denote the body’s angular velocity in the inertial frame, where ∧ denotes the
cross-product operation ûv = u× v. Then, it can written using P as

Ω̂ = R⊺PJ−1
d (A8)

Taking the time derivative of Ω̂ gives

˙̂
Ω = J−1

d P⊺PJ−1
d +R⊺

(
−∂V (R)

∂R
−RΛ

)
J−1
d (A9)

Since our goal is to represent the dynamics of Π, we convert the above to the body frame momentum
using Π = JΩ. Using properties of the hat map [20, Appendix A.1] gives us

Π̂ = ĴΩ = Tr[Jd]Ω̂− ĴdΩ = Ω̂Jd − JdΩ̂
⊺. (A10)
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Taking the time derivative of the above then gives

˙̂
Π =

˙̂
ΩJd − Jd

˙̂
Ω, (A11)

=
(
J−1
d P⊺P −P⊺PJ−1

d

)
−
(
R⊺ ∂V (R)

∂R
+

(
∂V (R)

∂R

)⊺

R

)
− (Λ−Λ⊺) , (A12)

=
(
J−1
d P⊺P −P⊺PJ−1

d

)
−
(
R⊺ ∂V (R)

∂R
+

(
∂V (R)

∂R

)⊺

R

)
, (A13)

where the symmetric Λ vanishes on the last line.

Since P = RΩ̂Jd, applying properties of the hat map [20, Appendix A.1] further simplifies the
above as

ˆ̇Π =
(
Ω̂⊺Ω̂Jd − JdΩ̂

⊺Ω̂
)
−
(
R⊺ ∂V (R)

∂R
+

(
∂V (R)

∂R

)⊺

R

)
, (A14)

= ̂Ω× JdΩ−
(
R⊺ ∂V (R)

∂R
+

(
∂V (R)

∂R

)⊺

R

)
. (A15)

Thus, applying the vee map and converting back to J and Π gives

Π̇ = Ω× JdΩ−
(
R⊺ ∂V (R)

∂R
+

(
∂V (R)

∂R

)⊺

R

)∨
, (A16)

= Ω× () Tr[J]− J)Ω−
(
R⊺ ∂V (R)

∂R
+

(
∂V (R)

∂R

)⊺

R

)∨
, (A17)

= −Ω× JΩ −
(
R⊺ ∂V (R)

∂R
+

(
∂V (R)

∂R

)⊺

R

)∨
, (A18)

= Π× J−1Π−
(
R⊺ ∂V (R)

∂R
+

(
∂V (R)

∂R

)⊺

R

)∨
. (A19)

Hence, the rotational equations of motion on SO(3) are
Ṙ = RĴ1Π,

Π̇ = Π× J−1Π−
(
R⊺ ∂V (R)

∂R
−
(
∂V (R)

∂R

)⊺

R

)∨
.

(A20)

A.2 Variational Principle for Mechanics on the Lie Group

We can also apply the Euler-Lagrange equations for Hamilton’s variational principle on a Lie group,
a topic that has been well studied (e.g., Marsden and Ratiu [43], Holm et al. [44]) [20], and we
summarize the results for the special case of rigid bodies from the expository part of Lee et al. [27].

Denote the infinitesimally varied rotation by Rϵ = R exp(ϵη̂), with ϵ ∈ R and η ∈ R3, where exp(·)
is the exponential map from so(3) to SO(3). The varied angular velocity Ω̂ϵ is

Ω̂ϵ = R⊺
ϵ Ṙϵ = exp(−ϵη̂)

(
Ṙ exp(ϵη̂) +R exp(ϵη̂)ϵη̂

)
, (A21)

= exp(−ϵη̂)Ω̂ exp(−ϵη̂) + exp(−ϵη̂)ˆ̇η, (A22)

= Ω̂+ ϵ
(
ˆ̇η + Ω̂η̂ − η̂Ω̂

)
+ O(ϵ2). (A23)

Consider the action

S(Ω,R) =

∫ t1

t0

L(Ω,R) dt =

∫ t1

t0

1

2
Tr
[
Ω̂JdΩ̂

]
− V (R) dt . (A24)
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Taking the variation Sϵ of the action S, we have

Sϵ(Ω,R) = S(Ωϵ,Rϵ),

= S(Ω,R) + ϵ

∫ t1

t0

{
1

2
Tr
[
− ˆ̇η

(
JdΩ̂+ Ω̂Jd

)
+ η̂Ω̂

(
JdΩ̂+ Ω̂Jd

)
− η̂

(
JdΩ̂ + Ω̂JdΩ̂

) ]
+ Tr

[
η̂R⊺ ∂V (R)

∂R

]}
dt

+ O(ϵ2).

(A25)

Using Hamilton’s Principle, we have d
dϵ

∣∣
ϵ=0

Sϵ = 0, i.e.,

1

2

∫ t1

t0

Tr

[
η̂

{
ĴΩ̇+ Ω̂× JΩ+ 2R⊺ ∂V (R)

∂R

}]
dt = 0, (A26)

for any η ∈ R3. Hence, ĴΩ̇+ Ω̂× JΩ+ 2R⊺ ∂V (R)
∂R must be skew-symmetric, giving us

ĴΩ̇ = −Ω̂ × JΩ+

(
∂V (R)

∂R

⊺

R−R⊺ ∂V (R)

∂R

)
. (A27)

Thus, by definition of Π and applying the vee map, we recover the same update

Π̇ = Π× J−1Π+

(
∂V (R)

∂R

⊺

R −R⊺ ∂V (R)

∂R

)∨
. (A28)

B Details of the Lie T2 splitting integrator

The full Hamiltonian H takes the form

H(q,R,p,Π) =

N∑
i=1

1

2
p⊺
i pi/mi +

1

2
Π⊺

i J
−1
i Πi + V (q,R) (B1)

We borrow from Chen et al. [20] the idea of Lie-group and symplecticity preserving splitting and
split our Hamiltonian asH = HKE +HPE +Hasym, where

HKE :=

N∑
i=1

1

2
p⊺
i pi/mi +

1

2
Π⊺

i J
−1
i,symΠi (B2)

HPE := V (q,R) (B3)

Hasym :=

N∑
i=1

1

2
Π⊺

i J
−1
i,asymΠi (B4)

where we assume that Ji is axis-symmetric, i.e.,

Ji :=

J
(1)
i 0 0

0 J
(2)
i 0

0 0 J
(3)
i

 (B5)

and J−1
i,sym and J−1

i,asym denote the axial-symmetric and residual terms of J−1
i such that J−1

i,sym +

J−1
i,asym = J−1

i , i.e.,

J−1
i,sym :=

1/J
(1)
i 0 0

0 1/J
(1)
i 0

0 0 1/J
(3)
i

 , J−1
i,asym :=

0 0 0

0 1/J
(2)
i − 1/J

(1)
i 0

0 0 0

 . (B6)

Then, each ofHKE +HPE +Hasym can be integrated exactly.
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Exact integration of HKE For HKE, we have the equations of motion (using (1a)-(1d) but with
V = 0) 

q̇i = pi/mi

ṗi = 0

Ṙi = Ri
̂J−1
i,symΠi

Π̇i = Πi × J−1
i,symΠi

(B7a)
(B7b)

(B7c)

(B7d)

The equation for Π̇i (B7d) is the Euler equation for a free rigid body [20]. It is exactly solvable with
a simple expression for axial-symmetric bodies, since in this case Π̇ simplifies as

Π̇i = Πi × J−1
i,symΠi =


(
1/J

(3)
i − 1/J

(1)
i

)
Πi,yΠi,z

−
(
1/J

(3)
i − 1/J

(1)
i

)
Πi,yΠi,z

0

 (B8)

Consequently, Πi,z(t) = Πi,z(0), meaning that we can express the above as the linear differential
equation

Π̇i(t) =

 0
(
1/J

(3)
i − 1/J

(1)
i

)
Πi,z(0) 0

−
(
1/J

(3)
i − 1/J

(1)
i

)
Πi,z(0) 0 0

0 0 0

Πi(0) (B9)

= −θt
[̂
0
0
1

]
Πi(0) (B10)

where θ :=
(
1/J

(3)
i − 1/J

(1)
i

)
Πi,z(0) and has the solution

Πi(t) = exp

−θt[̂00
1

]Πi(0) = R⊺
z (θt)Πi(0) (B11)

where Rz denotes the rotation matrix around the z axis. Taking the above back to (B7c) then gives us
the solution for Ri as well, giving the flow ϕ

[KE]
h ofHKE as

qi(h) = qi(0) + pi/mih,

pi(h) = pi(0),

Ri(h) = Ri(0)RΠi(0)

(
∥Πi(0)∥h/J (1)

i

)
Rz(θh),

Πi(h) = R⊺
z (θh)Πi(0).

(B12)

Exact integration of HPE ForHPE, the equations of motion are [20]
q̇i = 0, ṗi = −

∂V

∂qi
,

Ṙi = 0, Π̇i = −
(
R⊺

i

∂V

∂Ri
−
(

∂V

∂Ri

)⊺

Ri

)∨
.

(B13)

Since qi and pi stay constant, pi and Πi change at constant rates. Hence, the flow ϕ
[PE]
h ofHPE is

given by 

qi(h) = qi(0)

pi(h) = pi(0) −
∂V

∂qi
h,

Ri(h) = Ri(0),

Πi(h) = Πi(0) −
(
R⊺

i

∂V

∂Ri
−
(

∂V

∂Ri

)⊺

Ri

)∨
h.

(B14)
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Exact integration of Hasym Finally, the equations of motion ofHasym are given by (again adapting
(1a)-(1d)) {

q̇i = 0, ṗi = 0,

Ṙi = Ri
̂J−1
i,asymΠi, Π̇i = Πi × J−1

i,asymΠi.
(B15)

which can be solved to obtain the flow ϕ
[asym]
h ofHasym as

qi(h) = qi(0)

pi(h) = pi(0),

Ri(h) = Ry(δΠ
(2)
i h)Ri(0),

Πi(h) = Ry(−δΠ(2)
i h)Πi(0).

(B16)

where δ := 1/J
(2)
i − 1/J

(1)
i .

Having obtained analytical solutions for each of the flows ϕ[KE], ϕ[PE], ϕ[asym], we then combine them
with the non-conservative momentum update from the non-conservative forcing terms Fpi

and FΠi

with flow ϕ
[force]
h

qi(h) = qi(0)pi(h) = pi(0) + Fpi
h,Ri(h) = Ri(0),Πi(h) = Πi(0) + FΠi

h. (B17)

Consequently, the full Lie T2 integrator is obtained by applying the Strang composition scheme to
obtain

ϕLie T2

h := ϕ
[KE]
h/2 ◦ ϕ

[PE]
h/2 ◦ ϕ

[asym]
h/2 ◦ ϕ

[force]
h ◦ ϕ[asym]

h/2 ◦ ϕ
[PE]
h/2 ◦ ϕ

[KE]
h/2 (B18)

C Training Details

We implement our method using Jax3 [45] and use the Haiku framework [46]4 for constructing the
deep neural networks. In all our experiments, we use a multilayer perceptron (MLP) with 3 hidden
layers each of size 256 with the SiLU activation [47] for all networks (V θ

resid, F
θ
p , F

θ
Π). Each method

is run until convergence. Other common training hyperparameters used are summarized in Table 3.

Structure of V θ
resid Note that we do not assume prior knowledge on the pairwise structure of the

potential function Vresid or of the forcing terms Fp, FΠ. More specifically, since the true Gravitational
potential (2) only acts pairwise between rigid bodies, the rigid body correction potential also acts
pairwise and has the structure

Vresid(q,R) =
∑
i<j

Vi,j,resid(qi,qj ,Ri,Rj). (C1)

For the forcing terms, the tidal forcing term also acts pairwise with coupled effects on pi and Πi due
the relationship between forces and torques, while the post-Newton general-relativity correction term
acts on each planet individually and affects only pi. However, in this work, we assume that none of
this prior knowledge is available and aim to learn everything purely from data. Hence, we choose to
learn the high dimensional forms of Vresid, Fp, FΠ. The fact that we were able to obtain improvements
despite the high dimensionality of the input space (8 planets each with (qi,Ri) ∈ R3×R3×3 ≈ R12,
i.e., R96 for V and R144 for Fp, FΠ) is an indication of the generality of our approach. We
believe that the proposed approach can be made more scalable and have better generalization if
we do assume some knowledge about the structure of the forces at play and instead, e.g., learn
V θ

resid(qi, qj ,Ri,Rj , ϕi, ϕj) instead of the more general V θ
resid(q,R) and similarly for the forcing

terms, where ϕi, ϕj contains known or potentially learned information about physical properties
about each rigid body which are needed. Here, since the ordering of i and j is not important, some
type of permutation-invariant encoding such as [48] should be used to further improve generalization.

3https://github.com/google/jax. The repository is licensed under Apache-2.0.
4https://github.com/deepmind/dm-haiku. The repository is licensed under Apache-2.0.
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Table 3: Common hyperparameters used for training in all experiments.

Name Value

Batch size 256
Optimizer AdamW [49]
Learning Rate 4e−4

Training All experiments are done on a single RTX 3090 locally. The length of each run is
dependent on the complexity of the integrator. For example, explicit Euler is the simplest and has the
fastest per-iteration time, while Lie RK4 has the slowest per-iteration time. The Lie T2 integrator
has a per-iteration time between the two extremes with each experiment taking approximately three
hours.

Data generation We use the GRIT5 simulator [20] for generating the dataset in all cases. The GRIT
simulator uses a high order Lie-group symplectic integrator derived using a tailored splitting scheme
and can handle tidal forces (between all pairs of bodies) and general relativistic effects (between each
planet and the host star, assuming that the host star is much more massive than the other planets)
using a post-Newtonian correction term. Each dataset consists of 32 different trajectories, which is
then split in a 80-20 training-validation split. Each trajectory is then further subsampled to provide
128 tuples (q,R,p,Π) of datapoints. Each trajectory is generated by adding small multiplicative
Gaussian noise to the coordinates of each body.

C.1 Toy Two-Body Problem

The parameters for this system were hand-picked to provide intuition on how the additional corrections
differ from the pure point-mass potential that is widely used in other Hamiltonian learning literature.

C.2 TRAPPIST-1

The initial conditions for this system were taken directly from the TRAPPIST-1 example from GRIT.

D Details on Integrators used for Comparison in Section 3

To answer the question Q2 of how important are symplecticity (S) and Lie-group preservation (L)
for learning, we vary the choice of integrator in our experiments. The integrators used can be broadly
split into four categories:

Neither Symplectic S nor Lie-group preserving L: This category contains the popular explicit
Euler and Runge-Kutta 4 integrators, neither of which are symplectic or Lie-group preserving. The
finite-difference scheme from Greydanus et al. [1], Greydanus and Sosanya [37] can be interpreted as
an application of the explicit Euler integrator David and Méhats [10]. Explicit Euler is also used in
the works of ]. Runge-Kutta 4 is a popular fourth-order integrator due to its implementation simplicity
and is used in Finzi et al. [13], Zhong et al. [14], Duong and Atanasov [16], Zhong et al. [50, 51].

Symplectic S but not Lie-group preserving L: This category contains the verlet integrator, which
we define loosely in the current work as the integrator obtained by using classical splitting and Strang
composition, but without performing exact integration on the manifold. In the Euclidean case where
H(q,p) = 1

2p
⊺p/m+ V (q), this takes the form

q(h/2) = q(0) +
p(0)

m
h, (D1)

p(h) = p(0)− ∂V

∂q
h, (D2)

q(h) = q(h/2) +
p(1)

m
h, (D3)

5https://github.com/GRIT-RBSim/GRIT. The repository is licensed under Apache-2.0.
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and corresponds to the “leapfrog” proposed in SRNN Chen et al. [6]. In our setting where the space
is not Euclidean, we interpret a “naive” implementation to look like the following qi(h/2) = qi(0) +

pi(0)

m
h,

Ri(h/2) = Ri(0) +Ri(0)
̂J−1
i Πi(0)h,

(D4a)

(D4b)
pi(h) = pi(0) −

∂V

∂qi
h,

Πi(h) = Πi(0) +

(
Πi(0) × J−1

i Πi(0)−
(
R⊺

i (0)
∂V

∂Ri
−
(

∂V

∂Ri

)⊺

Ri(0)

)∨)
h,

(D5a)

(D5b)

 qi(h) = qi(h/2) +
pi(h)

m
h,

Ri(h) = Ri(h/2) +Ri(h)
̂J−1

i Πi(h)h,

(D6a)

(D6b)

Not Symplectic S but is Lie-group preserving L: This category contains the Lie RK2 (CF2) and
Lie RK4 (CF4) commutator-free Lie-group preserving integrators from Celledoni et al. [52]. These
integrators are Lie-group preserving but are not symplectic. Specifically, the flow of Lie RK2 is
described by 

[
qi(h/2)
pi(h/2)
Πi(h/2)

]
=

[
qi(0)
pi(0)
Πi(0)

]
+

 q̇i(0)
ṗi(0)

Π̇i(0)

 h,

F1 = ̂J−1
i Πi(0),

Ri(h/2) = exp(F1h/2)Ri(0),

(D7)



[
qi(h)
pi(h)
Πi(h)

]
=

[
qi(0)
pi(0)
Πi(0)

]
+

 q̇i(h/2)
ṗi(h/2)

Π̇i(h/2)

 h,

F2 = ̂J−1
i Πi(h/2),

Ri(h) = exp(F2h)Ri(0).

(D8)

For Lie RK4, the coordinates in Euclidean space (i.e., q,p,Π) follow the normal RK4 integration in
a similar fashion as above, while the flow of the R coordinate is described by{

F1 = ̂J−1
i Πi(0),

R1
i = exp(F1h/2)Ri(0),

(D9){
F2 = Ĵ−1

i Π1
i ,

R2
i = exp(F2h/2)Ri(0),

(D10){
F3 = Ĵ−1

i Π2
i ,

R3
i = exp((F3 − F1/2)h)R

2
i ,

(D11)

F4 = Ĵ−1
i Π3

i ,

Ri(h/2) = exp

(
h

12
(3F1 + 2F2 + 2F3 − F4)

)
Ri(0),

Ri(h) = exp

(
h

12
(−F1 + 2F2 + 2F3 + 3F4)

)
Ri(h/2),

(D12)

where the superscripts denote the intermediate outputs of each stage.

Both Symplectic S and Lie-group preserving L: This category contains our proposed Lie T2

integrator which is both symplectic and Lie-group preserving using a splitting technique that allows
for exact integration, borrowed from Chen et al. [20]. See App B for a detailed derivation.
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E Definition of Evaluation Metrics

The errors ∥∆q∥2, ∥∆R∥ in Table 1 and Table 2 are computed by predicting a trajectory with 500
integrator steps, and then computing

∆qk,l := qk,l − q̂k,l, (E1)

∆Rk,l := Rk,l − R̂k,l, (E2)

and the norm for R ∈ SO(3)⊗N is the geodesic computed as

∥R∥ :=
N∑
i=1

∥Ri∥, ∥Ri∥ := cos−1

(
tr(R⊺

i Ri)− 1

2

)
(E3)

The numbers shown in the table are taken to be the mean across all LK samples.

The errors ∥∆ṗ∥ and
∥∥∥∆Π̇

∥∥∥ in Table 1 are intended to measure how well the forces (both conservative
and non-conservative) are learned. Consequently, these are computed along the dataset and not the
predicted trajectory and are defined as

∆ṗk =
p̂((k + 1)h)− p(kh)

h
− p((k + 1)h)− p(kh)

h
, (E4)

∆Π̇k =
Π̂((k + 1)h)− Π(kh)

h
− Π((k + 1)h)− Π(kh)

h
, (E5)

where p̂ and Π̂ in the equation above denote the one-step predictions using the learned integrator ϕh,
i.e.

q̂(h), p̂(h), R̂(h), Π̂(h), := ϕh

(
q(0), p(0), R(0),Π(0)

)
. (E6)

Similarly, the errors
∥∥∥∆∂V

∂q

∥∥∥
2

and
∥∥∥∆∂V

∂q

∥∥∥
2

in Table 2 measure how well the potential (and hence
the conservative forces) have been learned. Hence, these are again computed along the dataset and
not the predicted trajectory and are defined as∥∥∥∥∆∂V

∂q

∥∥∥∥2
2

:=

∥∥∥∥∂V θ
resid

∂q
− ∂Vresid

∂q

∥∥∥∥2
2

, (E7)

∥∥∥∥∆∂V

∂R

∥∥∥∥2
2

:=

N∑
i=1

∥∥∥∥∥
(
R⊺

i

∂V θ
resid

∂Ri
−
(
∂V θ

resid

∂Ri

)⊺

Ri

)∨
−
(
R⊺

i

∂Vresid

∂Ri
−
(
∂Vresid

∂Ri

)⊺

Ri

)∨∥∥∥∥∥
2

2

,

(E8)

where the additional manipulations for ∆ ∂V
∂R denote the projection of R⊺

i
∂V
∂Ri

on the skew-symmetric
matrices. This is done because only the skew-symmetric part of R⊺

i
∂V
∂Ri

is used in the equations of
motion (1a)–(1d) and hence the learned symmetric part can be arbitrarily defined.

F Limitations and Future Directions

One big assumption we make in our work is that the masses and inertial tensors mi,Ji are known.
This may be a restricting assumption when applying this method to learning physics for rigid bodies
where this information is not available and must be learned jointly with the physics, an approach
taken in many works on learning with Hamiltonian structure (e.g., [16, 51]). Moreover, as discussed
in App C, our framework does not assume that prior knowledge on the structure (e.g., pairwise,
independent) of the potential or forcing terms is known. If we make this assumption, then additional
physical properties for each rigid body may need to be provided to fully specify the structured physics
(e.g., time lag and tide constants for tidal forcing). Extending this framework to handle the learning
of per-body physical properties at the same time is left for future work.

Another direction that we have not been able to explore in this work is the robustness of our method
to noise in the dataset. In this work, we use a dataset generated using the GRIT [20] simulator (see
App C). Consequently, the dataset used is clean and not corrupted by any noise. As noted in SRNN
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Chen et al. [6], integrating for multiple consecutive timesteps may allow the network to better discern
the true noiseless trajectory when computing the loss function. Moreover, the benefit from performing
this multi-step training is integrator dependent, with improvements not observed when using the naive
explicit Euler integration. Given that, 1. our configuration space now lies on a Lie-group manifold,
and 2. the physics of our system are mutiscale, exploring whether those insights are applicable to the
problem considered in this work is a future interesting direction that will help inform practitioners
wishing to apply this methodology to real world data.
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