
De-noising non-Gaussian fields in cosmology with
normalizing flows

Adam Rouhiainen
Department of Physics

University of Wisconsin-Madison
Madison, WI 53706

rouhiainen@wisc.edu

Moritz Münchmeyer
Department of Physics

University of Wisconsin-Madison
Madison, WI 53706

muenchmeyer@wisc.edu

Abstract

Fields in cosmology, such as the matter distribution, are observed by experiments
up to experimental noise. The first step in cosmological data analysis is usually
to de-noise the observed field using an analytic or simulation driven prior. On
large enough scales, such fields are Gaussian, and the de-noising step is known as
Wiener filtering. However, on smaller scales probed by upcoming experiments, a
Gaussian prior is substantially sub-optimal because the true field distribution is very
non-Gaussian. Using normalizing flows, it is possible to learn the non-Gaussian
prior from simulations (or from more high-resolution observations), and use this
knowledge to de-noise the data more effectively. We show that we can train a flow
to represent the matter distribution of the universe, and evaluate how much signal-
to-noise can be gained in idealized conditions, as a function of the experimental
noise. We also introduce a patching method to reconstructing information on
arbitrarily large images by dividing them up into small maps (where we reconstruct
non-Gaussian features), and patching the small posterior maps together on large
scales (where the field is Gaussian).

1 Introduction

Normalizing flows [1] have been shown to be very effective at learning high-dimensional probability
distribution functions (PDFs), in particular when the random variables are spatially organized as
in an image. This has led to a lot of recent work where PDFs in physics have been parametrized
with flows, in particular in the domain of lattice QCD [2]. In our precursor work [3], we evaluated
how well various flows can learn sample generation and density estimation of cosmological fields.
In the present work, we use the learned flow for a practical application, finding the maximum a
posterior (MAP) value of a noisy observation. The potential gain of the method is that observations
from galaxy survey telescopes could be de-noised using a normalizing flow to ultimately reach better
cosmological constraints. Here we do not yet go all the way to real data application but make some
simplifications to focus on the machine learning problem.

In cosmology, apart from our previous work [3], flows have recently been used to represent the matter
distribution of the universe in [4]. This paper designed a rotation invariant flow, TRENF, specifically
for cosmology, while here we used a classical real NVP flow [5] which is only translation invariant.
The TRENF paper is not solving the posterior reconstruction task discussed here but is concerned
with the parameter dependence of the flow on cosmological parameters. The closest existing works
which we are aware of are [6] and [7], which also aim to improve the posterior of a noisy observation
of a Gaussian field, by using a learned prior. However in their case, a score matching approach was
used which learns only gradients, rather than a normalizing flow that gives the complete normalized
PDF. Further, these works did not systematically study how much signal to noise can be gained
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depending on the noise in the experiment, and considered the case of the lensing convergence map,
rather than the matter distribution. In the following we will use the simulated matter distribution
as a proxy for observable non-Gaussian fields that depend on the matter distribution, including the
smoothed galaxy field in a galaxy survey, the convergence map of galaxy surveys, or the secondary
anisotropies of a a high-resolution CMB survey (such as kSZ and CMB lensing) [8] [9].

The real NVP flow, used in this work to learn the matter distribution from simulations, is expressive
and is fast for both sampling and inference. Of particular use for us is that real NVP flow can be
trained on either periodic or non-periodic data simply by setting the padding mode of the network
convolutions to either periodic or zero padding. We use the same flow architecture for periodic data
(Section 3) and non-periodic data (Section 4) in this work, only changing the convolution padding
mode. The details of our network resemble [2], which we have modified for this work under the
CC BY license. Our flow stacks 16 affine coupling layers, each with their own CNN. We use 3
convolutional layers with kernel size 3 and leaky ReLU activation functions, and we use 12 hidden
feature maps after each of the first and second convolutions. This architecture has a receptive field
of 97 px, which on our data corresponds to a Fourier mode of k = 1.6× 10−2 h/Mpc. In practice
however, the real NVP network is learning the higher k modes more accurately [3]. This is acceptable
for our purposes, as the small k modes will be reconstructed with Wiener filtering. Testing different
sets of hyperparameters, we found improved generalization to OOD data with this setup of a relatively
small 26,336 parameters, at the cost of a larger receptive field.

2 Method - Optimizing the posterior

In a cosmological experiment, such as a survey of the galaxy distribution, one can assume that the
vector of data d = s+ n is a sum of mutually uncorrelated signal s and noise n, with covariances
S = ⟨ssT⟩ and N = ⟨nnT⟩. The first step in cosmological data analysis is often to find the MAP ŝ
of the signal given the data d, assuming that S and N are known. The MAP is given by maximizing
the posterior

lnP (s|d) ∝ lnP (d|s) + lnP (s) (1)

= −1

2
(s− d)

T
N−1 (s− d) + lnP (s) (2)

with respect to the signal s to find the MAP ŝ. Here we assumed that the noise of the experiment,
which appears in the likelihood, is Gaussian, which is usually the case in practice. If we also assume
that the signal is a Gaussian field, i.e. that the prior is

lnP (s) ∝ −1

2
sTS−1s, (3)

then there is an analytic solution to the maximization, called Wiener filtering, given by

ŝWF = S (S +N)
−1

d. (4)

Wiener filtering is very common in cosmology, see for example [10], [11]. However, upcoming
surveys in cosmology such as Rubin Observatory [12] or Simons Observatory [13] probe the mat-
ter distribution with such high resolution, that scales are being measured where the Gaussianity
assumption of the signal prior does not hold at all. Until recently, it would have been difficult to
improve upon this assumption, because no good analytic expressions for the matter distribution P (s)
at non-Gaussian scales exist. In this work, we introduce posterior reconstruction of non-Gaussian
signal maps s where the prior is learned with a normalizing flow.

Based on the learned differentiable prior we can either find the MAP solution to lnP (s|d), or perform
Hamiltonian Monte-Carlo to make probabilistic instances of solutions to lnP (s|d). This work will
make use of MAP solutions, while HMC results will be presented in the near future. A benefit of
using a learned prior over directly training a neural network for de-noising is that the noise matrix N
only appears in the likelihood term lnP (d|s), which is easy to compute for Gaussian noise. Therefore
a single trained flow used as the prior lnP (s) may be used to de-noise any amount of noise N .

3 Results - De-noising applied to simulations

We use the particle mesh code FastPM [14] to generate an ensemble of simulations of the matter
distribution of patches of the universe, and project them to 2 dimensions for computational simplicity.
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(a) Observed (noisy, mask) (b) Wiener filtered (c) Flow posterior (d) Truth

Figure 1: Observed, reconstructed posterior, and truth maps for 1.0σ̃ noise and a mask. Wiener
filtering reduces noise on large and moderate length scales at the cost of over-smoothing small length
scales. The flow posterior maps correctly retain the high frequency modes. The maps have length
128 px, with physical length 512 Mpc/h.

Using cosmological parameters ΩM = 0.315 and σ8 = 0.811, we simulate 1283 particles in a
512 Mpc/h side-length periodic box, and run 10 steps from scale factor a = 10 to a = 1. The
particles are then fitted to mesh, creating 3D arrays of 1283 px. We make four 2D projections per
3D box by projecting two dimensions by a quarter of the box length along the third dimension. We
make a total of 48,000 periodic matter density maps, split 80-10-10 as training, validation, and test
sets. Our real NVP flow is trained on the 1282 px 2D projections of the simulations with an RTX
A4000, using a batch size of 96 with a random rotation and flip given to each map. We minimize the
Kullback–Leibler divergence [1] between the flow mapping of a Gaussian noise base distribution and
our simulation target distribution with an Adam optimizer of learning rate 10−3, reduced by half on
plateauing. The loss converges in ∼ 106 training cycles, in about 10 hours.

After the flow is trained, we make simulated noisy data maps, by adding pixel-wise shot noise to
the independent test data, and mask it to mimic a typical survey geometry. On this simulated data,
we run an Adam optimizer to find MAP maps with our flow prior by extremizing lnP (y|d). We
found that we obtain the best results by using the flow prior only on small non-Gaussian scales,
while optimizing the large linear scales with ordinary Wiener filtering (where it is optimal). Thus
we make a Fourier cutoff at about k = 0.2 h/Mpc, taking the small k modes from Wiener filtering
and the large k modes from the flow posterior. An example demonstrating how our flow posterior
reconstructs information on a noisy, masked map is in Fig. 1; the noise in this example is a relatively
large 1.0σ̃, where we call σ̃ the pixel-wise st. dev. of our training data.

We measure the quality of our posterior maps in several ways: the MSE per pixel, the power spectra,
and the reconstruction noise defined by

Nfilter(k) = ⟨(εfilter)†εfilter⟩ (5)

where εfilter = yfilter − ytruth. We also measure the accuracy of the reconstruction with the Fourier
mode cross-correlation coefficient:

r(k) =
P true, filter(k)√
P true(k)P filter(k)

. (6)

where P true, filter(k) is the cross power spectrum.

We present results for reconstructing 100 maps in our test set for the 1.0σ̃ noise and mask setup. The
Wiener filtered MSE per pixel (computed in the non-masked region) is 0.130σ̃, while for the flow
posterior it is reduced to 0.101σ̃. Fig. 2 shows plots of the power spectrum of the posterior maps
and N(k) (left), and cross-correlation (center). We find improvement with the flow against Wiener
filtering on all scales above the nonlinear scale k ∼ 0.2 h/Mpc, with an improvement of up to a
factor of 2 in this setup for large k. Our results are reproducible in Jupyter Notebooks available at
github.com/SubmissionForPapers/DenoisingWithNF

We also examined how the improvement in the reconstruction depends on the noise in the map
(without a mask here). Fig. 2 (right) shows the MSE per pixel calculated as a function of noise level
(relative to σ̃), comparing the flow posterior with Wiener filtering. We find a lower MSE with the
flow at all noise levels. The greatest reduction in the flow’s MSE over Wiener filtering is for the
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Figure 2: Power spectra (left) and cross-correlation (center) comparing our flow posterior with Wiener
filtering for de-noising 1.0σ̃ noise, averaged over 100 maps, along with 1σ confidence intervals.
We find improvement with the flow over Wiener filtering on all modes above the nonlinear scale
k ∼ 0.2 h/Mpc: the flow power spectrum is closer to the truth, Nflow is lower than NWiener filtered,
and rtrue, flow shows a factor of 2 improvement at larger k modes. (Right) MSE per pixel between
posterior and truth maps for a range of noise levels, calculated on 100 maps at each point. The flow
improves de-noising at all noise levels relative to Wiener filtering.

noise around half of the signal (0.5σ̃), giving about a 30% improvement, with lesser improvements at
either the low or high noise limit. Intuitively, if the noise is small, the gains by a better prior will
be small since the prior matters less. On the other hand, for very large noise, the prior will begin to
dominate over the likelihood. A difficulty, as we have found, is that the normalizing flow is trained
on IID data, but the posterior optimization enters domains of the configuration space that are OOD
and thus the flow may not generalize well to such cases [15]. We found that it is advantageous for
generalization to use a flow with relatively few training parameters, and that splitting the k modes as
explained above helps at large noise.

4 Patching maps together to reconstruct large maps

Above we discussed that we use an ordinary Wiener Filter on large (linear) scales, and only use
the flow on small nonlinear scales. This also allows us to reconstruct very large maps with a
patching procedure, without the need to increase the flow dimension. As an example we reconstruct
a large map of length nL = 1024 px with a flow trained on non-periodic small maps of length
nS = 128 px. We use the same network architecture as described in Section 1, with zeros for the
convolution padding to respect the non-periodicity. Our training data is as described in Section 3,
except our 128 px 2D projections are cut out of 384 px 3D simulations to get non-periodicity. The
reconstruction and patching procedure is as follows. Divide the large, nL length periodic map into a
number of (2nL/nS)

2 evenly spaced small maps of length nS. These small maps have nS/4 length
overlapping regions with their four neighboring maps. Reconstruct these non-periodic small maps
with a trained flow. Apply Wiener filtering to the large map to reconstruct the small k modes. To
avoid discontinuities near the edges of the small maps, add only the the large k modes from only the
center nS/2 length region of the flow reconstructed maps to the Wiener filtered large map.

The critical step that allows the smaller maps to be patched together without discontinuities is the
Wiener filtering applied to the entire large map. This ‘global’ Wiener filtering is well within our
computational constraints for very large maps encountered in cosmology, while training a flow on
such large maps would be computationally infeasible. High-resolution observed and reconstructed
1024 px maps patched from 256 small 128 px maps are available in the Appendix. There is no visible
remnant of a grid where maps were patched together.

5 Conclusion

Flows are a powerful tool to deal with the non-Gaussianity of high-resolution cosmological surveys.
The key feature of flows is that their exact likelihoods are tractable and here we have made use of this
feature to de-noise simulated cosmological data, gaining up to a factor of 2 in the cross-correlation
coefficient. In the future, we will apply this method to various observables, include dependence on
cosmological parameters in the prior, and forecast gains for cosmological parameter estimation.
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6 Broader impact of our work

This work uses a real NVP normalizing flow to reconstruct noisy and masked cosmological data
made from simulations. The real NVP flow can be used to generate and manipulate images, and other
similar normalizing flows have recently been used to generate videos (although of low quality). We do
not build a new neural network model or improve any pre-existing models, but rather use an already
well-known model to learn a cosmological PDF; therefore we do not believe that we contribute to
the potential use of normalizing flows in harmful data generation or manipulation. Our de-noising
method presented here is specifically designed to run on matter distributions in cosmology, and our
results are measured in terms relevant to cosmology and astrophysics. As upcoming surveys of the
matter distribution probe more nonlinear scales, we believe that this work benefits the cosmology
community by providing a machine learning method of reconstructing future cosmological data.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Our main limitation is described

at the end of Section 3, being difficulties in running experiments on OOD data. We
also state in Section 1 that this work is not yet using real data, but simulations.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We provide
a broader impact statement section.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We read the guidelines at neurips.cc/public/EthicsGuidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] A URL is
provided in Section 3.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] At the end of Section 1

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] Our power spectrum, reconstruction noise, and
cross-correlation plots have confidence intervals for 100 experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] At the beginning of Section 3

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] At the end of Section 1

we cite where our real NVP code was derived from
(b) Did you mention the license of the assets? [Yes] At the end of Section 1 we mention

the license for what real NVP code was derived from
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

A URL is provided in Section 3.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We mention the license for the real NVP code we used, and we
made our own simulation data with FlowPM, which is used the MIT License.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Only cosmological simulations are used as
data.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Appendix: High-resolution plots for the large patched map

Here we provide high-resolution plots in Fig. 3 of an observed 1024 px matter distribution with noise
and a mask, along with the flow reconstructed map created with the patching scheme described in
Section 4.
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(a) Observed (noisy, mask)

(b) Flow posterior

Figure 3: Observed and reconstructed maps of length 1024 px (physical length 4096 Mpc/h), made
by patching together 256 maps of length 128 px as described in Section 4.
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