
Decay-aware neural network for event classification
in collider physics

Tomoe Kishimoto
Computing Research Center, High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki, Japan
International Center for Elementary Particle Physics, The University of Tokyo

Institute for AI and Beyond, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

tomoe.kishimoto@kek.jp

Masahiro Morinaga
International Center for Elementary Particle Physics, The University of Tokyo

Institute for AI and Beyond, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
morinaga@icepp.s.u-tokyo.ac.jp

Masahiko Saito
International Center for Elementary Particle Physics, The University of Tokyo

Institute for AI and Beyond, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
saito@icepp.s.u-tokyo.ac.jp

Junichi Tanaka
International Center for Elementary Particle Physics, The University of Tokyo

Institute for AI and Beyond, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
jtanaka@icepp.s.u-tokyo.ac.jp

Abstract

The goal of event classification in collider physics is to distinguish signal events of
interest from background events to the extent possible to search for new phenom-
ena in nature. We propose a decay-aware neural network based on a multi-task
learning technique to effectively address this event classification. The proposed
model is designed to learn the domain knowledge of particle decays as an auxil-
iary task, which is a novel approach to improving learning efficiency in the event
classification. Our experiments using simulation data confirmed that an induc-
tive bias was successfully introduced by adding the auxiliary task, and significant
improvements in the event classification were achieved compared with boosted
decision tree and simple multi-layer perceptron models.

1 Introduction

In collider physics experiments, a large number of events1 are produced from particle collisions
using high-energy accelerators, such as the Large Hadron Collider [1]. For data analysis, event

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

1The term “event” corresponds to “image” in image classification.

classification becomes crucial as it enables an effective separation of interesting signal events from
background events. Machine learning, such as boosted decision trees (BDT), has a long history
in collider physics [2, 3]; deep learning (DL) is also widely used to enhance the performance of
event classification. DL can provide significant discrimination power by utilizing its huge parame-
ter space; however, a large amount of data is required to maximize its performance. A multi-task
learning technique is a feasible approach to improving learning efficiency by introducing an induc-
tive bias. Multiple related tasks are trained simultaneously while using a shared representation in
multi-task learning, which may result in better performance than training the tasks individually.

A decay-aware neural network based on the multi-task learning technique is proposed in this pa-
per to efficiently address the event classification problem. In the proposed model, the main event
classification task and an auxiliary task are trained simultaneously, where the domain knowledge
of particle decays, as shown in Figure 1, is learned as the auxiliary task. In collider physics exper-
iments, heavy particles of interest, such as Higgs boson (h), immediately decay to other particles
and they are not observed by the detectors. Therefore, the auxiliary task based on particle decay
knowledge is expected to provide a good inductive bias because the features of these heavy particles
can be extracted efficiently from the observed particles.

In this study, we perform experiments using simulation data to evaluate the decay-aware neural
network. Furthermore, we also present the details of datasets and the proposed model structure. The
remainder of this paper is organized as follows. Section 2 describes the related works, including
our novelty. Section 3 summarizes the datasets used in this study. Section 4 provides details of the
proposed model. Section 5 presents the experimental results. Finally, Section 6 concludes the paper.

2 Related work

A previous study reported that a multi-layer perceptron (MLP) model outperformed traditional BDT
by identifying powerful features for the event classification [4]. Graph neural network (GNN) [5]
architecture has also been reported to enhance the event classification performance [6, 7]. Although
we use this GNN architecture in our proposed model to extract graph-level and edge-level features,
in contrast to these previous studies, our study has the following contributions:

• The multi-task learning is introduced to improve event classification performance. The rich
structure of GNN enables solving multiple tasks simultaneously. The event classification and
auxiliary tasks are implemented as the graph-level and edge-level classifications, respectively.

• Domain knowledge about particle decay is learned in the auxiliary task. The labels of auxiliary
tasks are prepared by counting the decay points between the observed objects.

3 Datasets

The training data were produced using particle physics simulations: proton–proton collision events
were generated by MadGraph5_aMC@NLO [8] at a center of mass energy of 13 TeV, with show-
ering and hadronization performed by Pythia8 [9] and detector response simulated by Delphes [10].
In this study, two types of datasets are defined as follows:

• 2HDM dataset: Two-Higgs-doublet model (2HDM) [11, 12], which introduces additional
Higgs bosons, H0, A and H±, is used as the signal event. Top pair production (tt̄) of the
Standard Model is used as the background event. Figure 1 (a) and (c) show Feynman diagrams
for the signal and background processes. The final state particles are one lepton (ℓ, electron or
muon), one neutrino (ν), two b-quarks (b), and two light-quarks (q).

• Z ′ dataset: A heavy neutral particle (Z ′) decaying into top quark pair [13, 14] is used as the
signal event. The background events are the tt̄ process. The decay chains of the top pairs are
the same between signal and background events, as shown in Figure 1 (b) and (c).

Neutrinos were reconstructed as a missing transverse momentum object. b-quark and light-quark
were reconstructed as b-jet and light-jet objects, respectively. In this study, the object-type is in-
dicated by an integer, and the four-momenta of each object (pT, η, ϕ, mass) and object-type were
employed as input variables. The log transformation was applied to pT and mass to fit the values

2

ℓ+

ν

b1
b̄2
q1
q̄2

H0

W+

h
W−

H+

(a) 2HDM signal process

ℓ+

ν

b1
q1
q̄2
b̄2

Z ′ t
W+

t̄
W−

(b) Z′ signal process

ℓ+

ν

b1
q1
q̄2
b̄2

t
W+

t̄
W−

(c) tt̄ background process

Figure 1: Examples of Feynman diagram for the signal and background processes.

within a reasonable range. 5 × 105, 5 × 104, and 5 × 104 events were independently generated for
training, validation, and test phases for each signal and background process.

3.1 Definition of auxiliary task labels

The label of the auxiliary task is defined by counting the particle decay points, including gluon
splitting points, between observed objects. Figure 2 presents examples of the label matrices corre-
sponding to Figure 1. For instance, the label between ℓ and ν in the tt̄ process is 1 because they
originated from the same W decay; moreover, the label between ℓ and b1 is 2 because there are
two decay points: t and W decays. The information of truth particles in Delphes outputs is an-
alyzed event by event to associate the observed objects with the truth particles to determine these
labels. Although many diagrams, including the next-to-leading order diagram, can be considered for
a given physics process, we specifically assume the tree-level diagrams in Figure 1 to prepare the
label matrices in this study. The label matrices are represented by an edge-level class in the GNN.

l ν b1 b2 q1 q2
l 0 1 3 3 4 4
ν 1 0 3 3 4 4
b1 3 3 0 1 4 4

b2 3 3 1 0 4 4
q1 4 4 4 4 0 1
q2 4 4 4 4 1 0

(a) 2HDM signal process

l ν b1 b2 q1 q2
l 0 1 2 4 5 5
ν 1 0 2 4 5 5
b1 2 2 0 3 4 4
b2 4 4 3 0 2 2
q1 5 5 4 2 0 1
q2 5 5 4 2 1 0

(b) Z′ signal process

l ν b1 b2 q1 q2
l 0 1 2 4 5 5
ν 1 0 2 4 5 5
b1 2 2 0 3 4 4
b2 4 4 3 0 2 2
q1 5 5 4 2 0 1
q2 5 5 4 2 1 0

(c) tt̄ background process

Figure 2: Examples of the label matrices for each process corresponding to Figure 1. There are s-
and t-channels in the tt̄ process; however, the t-channel uses the same label as the s-channel to fit
the same class range with the other processes. The max class label is 5 in this study.

4 Proposed decay-aware neural network

Figure 3 shows an overview of the proposed decay-aware neural network. A graph structure com-
posed of nodes and edges was built for the input data. In this study, each node in the graph corre-
sponds to an object. Thus, object features: four-momentum and object-type are assigned to the node
attribute. Edges are prepared as a fully-connected bidirectional graph, including a self-loop.

G
AT

BN

R
eLU

x4
 b

lo
ck

s G
AT

BN

R
eLU

Average
pooling

Linear

Graph classifier module

Signal or
Background

C
at

neighbor
nodes

Linear

Edge classifier module

R
eLU

Linear Predict edge labels GAT: Graph attention layer
BN: Batch normalization layer

Feature1 module Feature2 module

(#of objects, # of features)
= (6,5)

(36,256) (36,128) (36,128) (36,6)

(6,128) (6,128) (6,128) (6,128) (6,128) (6,128) (128) (2)

Event classification
task

Auxiliary task

Inputs

Node
Edge

x4
 b

lo
ck

s

Figure 3: Overview of the proposed DL model. The numbers in the bracket indicate output shapes.

3

The model consisted of four parts: feature1, feature2, edge classifier, and graph classifier modules.
Each feature module consists of a stack of blocks, where each block consists of the graph attention
network (GAT) layer [15, 16], batch normalization (BN) layer [17], and ReLU activation function.
The feature1 module is a shared representation of the concept of multi-task learning. The graph clas-
sifier module consists of an average pooling, which averages node attributes, and a fully connected
layer (Linear) to predict the graph-level class, that is, a signal or background event. The edge clas-
sifier module is aimed at predicting the edge-level class, which was described in Section 3.1. Edge
features are obtained by concatenating the source and target node attributes in the edge classifier
module; then, they are processed by Linear, ReLU, and Linear layers.

5 Experiments

Our proposed model for this experiment was implemented using PyTorch [18] and DGL [19] and is
available at [20]. All executions used a local cluster of NVIDIA Tesla A100 graphics cards.

A loss function is defined as L = Lgraph + α · Ledge, where Lgraph and Ledge are loss func-
tions for the event classification task and auxiliary task, respectively. CrossEntropyLoss and
BCEWithLogitsLoss functions in PyTorch were used. A parameter of α is introduced to scale the
loss value of the auxiliary task. Therefore, a normal event classification without the auxiliary task is
performed if α = 0. The best epoch for the validation data was used as the final weight parameters
after the training was performed for up to 100 epochs to minimize L. The SGD [21] algorithm was
used as an optimizer, and the learning rate was decreased from 0.01 to 0.0001 by the cosine anneal-
ing algorithm [22]. The batch size was fixed at 2,048. Other hyperparameters, such as the number
of nodes in the GAT layer, were optimized by a grid search with the fixed parameter of α = 0.

Figure 4 presents obtained AUC values of the event classification task in terms of α. The green
points show the values using the auxiliary task labels described in Section 3.1. The figures confirm
that the AUCs are improved by adding the auxiliary task, that is, α values are greater than 0. The
best α values were 44 (2HDM dataset) and 6 (Z ′ dataset). The orange points show the values
using random labels in the auxiliary task. No improvements were observed by the random labels as
expected. The AUC values of the auxiliary task with the best α values were 0.968 (2HDM dataset)
and 0.995 (Z ′ dataset), which were obtained by averaging each class with weights.

0 10 20 30 40 50
alpha

0.86

0.87

0.88

0.89

AU
C

2HDM dataset

Decay point label
Random label

0 10 20 30 40 50
alpha

0.935

0.936

0.937

0.938

0.939

AU
C

Z' dataset
Decay point label
Random label

Figure 4: AUC of the event classification task for each dataset. The AUC values are an average of
5 runs with different random seeds for the test data. The error bands show one standard deviation.

BDT and simple MLP models were also executed to compare the performance. Table 1 summarizes
observed AUCs for each experimental condition. The “low-level" in the BDT and MLP means that
the same input variables with our model, that is, the four-momenta and object-type for each object,
were used with a one-dimensional shape. The “w/ high-level" means that the invariant masses of
mbb, mℓνbb, mℓνqq , and mbbWW were calculated from the observed objects, and were added to the
input variables to utilize the high-level features. The BDT was executed using XGBoost [23]. The
MLP model consisted of a stack of Linear, BN layers, and ReLU activation functions. The max
depth in BDT and the number of layers and nodes in MLP were optimized by a grid search. The
table confirms that our model with the best α value shows better performances for both 2HDM and
Z ′ datasets. In comparison to the BDT and simple MLP models, our proposed model can extract
high-level features effectively based on particle decay information.

Our experiments have the following limitation. The training of our model is much slower than the
MLP model, which was approximately 36 batch/s (our model) and 300 batch/s (MLP model). Due to

4

Table 1: AUC values of the event classification task for each experimental condition. The AUC
values are an average of 5 runs with different random seeds for the test data. The errors show one
standard deviation. The max depth in BDT is 5 (2HDM) and 4 (Z ′). The number of Linear layers
in MLP is 5 (2HDM) and 4 (Z ′). The number of nodes in each Linear layer is 64 for both datasets.

2HDM Our model BDT MLP

α = 0 best α value low-level w/ high-level low-level w/ high-level

2HDM 0.865 0.893 0.794 0.838 0.862 0.865
± 0.002 ± 0.001 ± 0.001 ± <0.001 ± 0.001 ± 0.001

Z ′ 0.936 0.939 0.915 0.922 0.932 0.933
± <0.001 ± <0.001 ± <0.001 ± <0.001 ± <0.001 ± <0.001

this computational constraint, we were unable to increase the signal types and the number of training
events as we had intended. Additionally, we were interested in conducting a more thorough analysis
of the edge-level outputs, such as the attention weights in the GAT layer, to increase explainability.
Therefore, improving the training speed and explainability is a future subject.

6 Conclusion

In this paper, the decay-aware neural network based on the multi-task learning technique was dis-
cussed. The label of auxiliary task is defined based on the particle decay information to introduce
an inductive bias with our domain knowledge. We successfully trained the event classification task
and the auxiliary task simultaneously using the GNN architecture. Our experiments confirmed that
the event classification performance improved significantly by adding the auxiliary task, and better
performances were achieved compared with BDT and MLP models due to the inductive bias.

Broader Impact

This work can potentially contribute to the explainability of machine learning, which would be
interested in a wide range of scientific communities. In the field of collider physics, researchers have
a deep understanding of data based on particle physics theories and past experimental results. We can
probe behaviors of the machine learning by introducing the domain knowledge as demonstrated in
this paper. We believe that this approach is effective to understand what machine learning has learned
and improve its explainability. This study is aimed at improving a problem in pure fundamental
science, and we do not expect our study to result in a negative social impact.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP22K14050 and Institute for AI and
Beyond of the University of Tokyo.

References

[1] Lyndon Evans and Philip Bryant. LHC machine. Journal of Instrumentation, Vol. 3, No. 08,
pp. S08001–S08001, aug 2008.

[2] Piero Altoe Kim Albertsson and Dustin Anderson et al. Machine learning in high energy
physics community white paper. Journal of Physics: Conference Series, Vol. 1085, p. 022008,
sep 2018.

[3] Alexander Radovic, Mike Williams, David Rousseau, Michael Kagan, Daniele Bonacorsi,
Alexander Himmel, Adam Aurisano, Kazuhiro Terao, and Taritree Wongjirad. Machine learn-
ing at the energy and intensity frontiers of particle physics. Nature, Vol. 560, pp. 41–48, 2018.

[4] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for Exotic Particles in High-
Energy Physics with Deep Learning. Nature Commun., Vol. 5, p. 4308, 2014.

5

[5] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra,
Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational
inductive biases, deep learning, and graph networks, 2018.

[6] Murat Abdughani, Jie Ren, Lei Wu, and Jin Min Yang. Probing stop pair production at the
LHC with graph neural networks. Journal of High Energy Physics, Vol. 2019, No. 8, aug
2019.

[7] Jie Ren, Lei Wu, and Jin Min Yang. Unveiling CP property of top-higgs coupling with graph
neural networks at the LHC. Physics Letters B, Vol. 802, p. 135198, mar 2020.

[8] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer,
P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations. JHEP, Vol. 07, p.
079, 2014.

[9] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip
Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands. An
introduction to PYTHIA 8.2. Comput. Phys. Commun., Vol. 191, pp. 159–177, 2015.

[10] Michele Selvaggi. DELPHES 3: A modular framework for fast-simulation of generic collider
experiments. Journal of Physics: Conference Series, Vol. 523, p. 012033, jun 2014.

[11] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, Marc Sher, and Joao P. Silva. Theory
and phenomenology of two-higgs-doublet models. Physics Reports, Vol. 516, No. 1, pp. 1–
102, 2012. Theory and phenomenology of two-Higgs-doublet models.

[12] Celine Degrande. Automatic evaluation of UV and R2 terms for beyond the Standard Model
lagrangians: A proof-of-principle. Computer Physics Communications, Vol. 197, , 06 2014.

[13] Guido Altarelli, B. Mele, and M. Ruiz-Altaba. Searching for New Heavy Vector Bosons in pp̄
Colliders. Z. Phys. C, Vol. 45, p. 109, 1989. [Erratum: Z.Phys.C 47, 676 (1990)].

[14] B. Fuks and R. Ruiz. A comprehensive framework for studying W′ and Z′ bosons at hadron
colliders with automated jet veto resummation. Journal of High Energy Physics, Vol. 2017,
pp. 1–38, 2017.

[15] Shaked Brody, Uri Alon, and Eran Yahav. How Attentive are Graph Attention Networks? . In
International Conference on Learning Representations, 2022.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, Vol. 30. Curran Associates, Inc., 2017.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ICML’15, pp. 448–456. JMLR.org,
2015.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc., 2019.

[19] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao
Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng
Zhang. Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural
Networks. arXiv preprint arXiv:1909.01315, 2019.

[20] hepdecay. Available: https://github.com/ktomoe/hepdecay, 2022. (Accessed: Oct. 24,
2024).

[21] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016.

6

https://github.com/ktomoe/hepdecay

[22] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts,
2016.

[23] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pp. 785–794, New York, NY, USA, 2016. ACM.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Broader Impact Section.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section 5.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Section 3 and 5.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] See Figure 4 and Table 1.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

7

	Introduction
	Related work
	Datasets
	Definition of auxiliary task labels

	Proposed decay-aware neural network
	Experiments
	Conclusion

