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Abstract

The goal of event classification in collider physics is to distinguish signal events of
interest from background events to the extent possible to search for new phenom-
ena in nature. We propose a decay-aware neural network based on a multi-task
learning technique to effectively address this event classification. The proposed
model is designed to learn the domain knowledge of particle decays as an auxil-
iary task, which is a novel approach to improving learning efficiency in the event
classification. Our experiments using simulation data confirmed that an induc-
tive bias was successfully introduced by adding the auxiliary task, and significant
improvements in the event classification were achieved compared with boosted
decision tree and simple multi-layer perceptron models.

1 Introduction

In collider physics experiments, a large number of events1 are produced from particle collisions
using high-energy accelerators, such as the Large Hadron Collider [1]. For data analysis, event
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1The term “event” corresponds to “image” in image classification.



classification becomes crucial as it enables an effective separation of interesting signal events from
background events. Machine learning, such as boosted decision trees (BDT), has a long history
in collider physics [2, 3]; deep learning (DL) is also widely used to enhance the performance of
event classification. DL can provide significant discrimination power by utilizing its huge parame-
ter space; however, a large amount of data is required to maximize its performance. A multi-task
learning technique is a feasible approach to improving learning efficiency by introducing an induc-
tive bias. Multiple related tasks are trained simultaneously while using a shared representation in
multi-task learning, which may result in better performance than training the tasks individually.

A decay-aware neural network based on the multi-task learning technique is proposed in this pa-
per to efficiently address the event classification problem. In the proposed model, the main event
classification task and an auxiliary task are trained simultaneously, where the domain knowledge
of particle decays, as shown in Figure 1, is learned as the auxiliary task. In collider physics exper-
iments, heavy particles of interest, such as Higgs boson (h), immediately decay to other particles
and they are not observed by the detectors. Therefore, the auxiliary task based on particle decay
knowledge is expected to provide a good inductive bias because the features of these heavy particles
can be extracted efficiently from the observed particles.

In this study, we perform experiments using simulation data to evaluate the decay-aware neural
network. Furthermore, we also present the details of datasets and the proposed model structure. The
remainder of this paper is organized as follows. Section 2 describes the related works, including
our novelty. Section 3 summarizes the datasets used in this study. Section 4 provides details of the
proposed model. Section 5 presents the experimental results. Finally, Section 6 concludes the paper.

2 Related work

A previous study reported that a multi-layer perceptron (MLP) model outperformed traditional BDT
by identifying powerful features for the event classification [4]. Graph neural network (GNN) [5]
architecture has also been reported to enhance the event classification performance [6, 7]. Although
we use this GNN architecture in our proposed model to extract graph-level and edge-level features,
in contrast to these previous studies, our study has the following contributions:

• The multi-task learning is introduced to improve event classification performance. The rich
structure of GNN enables solving multiple tasks simultaneously. The event classification and
auxiliary tasks are implemented as the graph-level and edge-level classifications, respectively.

• Domain knowledge about particle decay is learned in the auxiliary task. The labels of auxiliary
tasks are prepared by counting the decay points between the observed objects.

3 Datasets

The training data were produced using particle physics simulations: proton–proton collision events
were generated by MadGraph5_aMC@NLO [8] at a center of mass energy of 13 TeV, with show-
ering and hadronization performed by Pythia8 [9] and detector response simulated by Delphes [10].
In this study, two types of datasets are defined as follows:

• 2HDM dataset: Two-Higgs-doublet model (2HDM) [11, 12], which introduces additional
Higgs bosons, H0, A and H±, is used as the signal event. Top pair production (tt̄) of the
Standard Model is used as the background event. Figure 1 (a) and (c) show Feynman diagrams
for the signal and background processes. The final state particles are one lepton (ℓ, electron or
muon), one neutrino (ν), two b-quarks (b), and two light-quarks (q).

• Z ′ dataset: A heavy neutral particle (Z ′) decaying into top quark pair [13, 14] is used as the
signal event. The background events are the tt̄ process. The decay chains of the top pairs are
the same between signal and background events, as shown in Figure 1 (b) and (c).

Neutrinos were reconstructed as a missing transverse momentum object. b-quark and light-quark
were reconstructed as b-jet and light-jet objects, respectively. In this study, the object-type is in-
dicated by an integer, and the four-momenta of each object (pT, η, ϕ, mass) and object-type were
employed as input variables. The log transformation was applied to pT and mass to fit the values
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Figure 1: Examples of Feynman diagram for the signal and background processes.

within a reasonable range. 5 × 105, 5 × 104, and 5 × 104 events were independently generated for
training, validation, and test phases for each signal and background process.

3.1 Definition of auxiliary task labels

The label of the auxiliary task is defined by counting the particle decay points, including gluon
splitting points, between observed objects. Figure 2 presents examples of the label matrices corre-
sponding to Figure 1. For instance, the label between ℓ and ν in the tt̄ process is 1 because they
originated from the same W decay; moreover, the label between ℓ and b1 is 2 because there are
two decay points: t and W decays. The information of truth particles in Delphes outputs is an-
alyzed event by event to associate the observed objects with the truth particles to determine these
labels. Although many diagrams, including the next-to-leading order diagram, can be considered for
a given physics process, we specifically assume the tree-level diagrams in Figure 1 to prepare the
label matrices in this study. The label matrices are represented by an edge-level class in the GNN.

l ν b1 b2 q1 q2
l 0 1 3 3 4 4
ν 1 0 3 3 4 4
b1 3 3 0 1 4 4

b2 3 3 1 0 4 4
q1 4 4 4 4 0 1
q2 4 4 4 4 1 0

(a) 2HDM signal process

l ν b1 b2 q1 q2
l 0 1 2 4 5 5
ν 1 0 2 4 5 5
b1 2 2 0 3 4 4
b2 4 4 3 0 2 2
q1 5 5 4 2 0 1
q2 5 5 4 2 1 0

(b) Z′ signal process

l ν b1 b2 q1 q2
l 0 1 2 4 5 5
ν 1 0 2 4 5 5
b1 2 2 0 3 4 4
b2 4 4 3 0 2 2
q1 5 5 4 2 0 1
q2 5 5 4 2 1 0

(c) tt̄ background process

Figure 2: Examples of the label matrices for each process corresponding to Figure 1. There are s-
and t-channels in the tt̄ process; however, the t-channel uses the same label as the s-channel to fit
the same class range with the other processes. The max class label is 5 in this study.

4 Proposed decay-aware neural network

Figure 3 shows an overview of the proposed decay-aware neural network. A graph structure com-
posed of nodes and edges was built for the input data. In this study, each node in the graph corre-
sponds to an object. Thus, object features: four-momentum and object-type are assigned to the node
attribute. Edges are prepared as a fully-connected bidirectional graph, including a self-loop.
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Figure 3: Overview of the proposed DL model. The numbers in the bracket indicate output shapes.
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The model consisted of four parts: feature1, feature2, edge classifier, and graph classifier modules.
Each feature module consists of a stack of blocks, where each block consists of the graph attention
network (GAT) layer [15, 16], batch normalization (BN) layer [17], and ReLU activation function.
The feature1 module is a shared representation of the concept of multi-task learning. The graph clas-
sifier module consists of an average pooling, which averages node attributes, and a fully connected
layer (Linear) to predict the graph-level class, that is, a signal or background event. The edge clas-
sifier module is aimed at predicting the edge-level class, which was described in Section 3.1. Edge
features are obtained by concatenating the source and target node attributes in the edge classifier
module; then, they are processed by Linear, ReLU, and Linear layers.

5 Experiments

Our proposed model for this experiment was implemented using PyTorch [18] and DGL [19] and is
available at [20]. All executions used a local cluster of NVIDIA Tesla A100 graphics cards.

A loss function is defined as L = Lgraph + α · Ledge, where Lgraph and Ledge are loss func-
tions for the event classification task and auxiliary task, respectively. CrossEntropyLoss and
BCEWithLogitsLoss functions in PyTorch were used. A parameter of α is introduced to scale the
loss value of the auxiliary task. Therefore, a normal event classification without the auxiliary task is
performed if α = 0. The best epoch for the validation data was used as the final weight parameters
after the training was performed for up to 100 epochs to minimize L. The SGD [21] algorithm was
used as an optimizer, and the learning rate was decreased from 0.01 to 0.0001 by the cosine anneal-
ing algorithm [22]. The batch size was fixed at 2,048. Other hyperparameters, such as the number
of nodes in the GAT layer, were optimized by a grid search with the fixed parameter of α = 0.

Figure 4 presents obtained AUC values of the event classification task in terms of α. The green
points show the values using the auxiliary task labels described in Section 3.1. The figures confirm
that the AUCs are improved by adding the auxiliary task, that is, α values are greater than 0. The
best α values were 44 (2HDM dataset) and 6 (Z ′ dataset). The orange points show the values
using random labels in the auxiliary task. No improvements were observed by the random labels as
expected. The AUC values of the auxiliary task with the best α values were 0.968 (2HDM dataset)
and 0.995 (Z ′ dataset), which were obtained by averaging each class with weights.
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Figure 4: AUC of the event classification task for each dataset. The AUC values are an average of
5 runs with different random seeds for the test data. The error bands show one standard deviation.

BDT and simple MLP models were also executed to compare the performance. Table 1 summarizes
observed AUCs for each experimental condition. The “low-level" in the BDT and MLP means that
the same input variables with our model, that is, the four-momenta and object-type for each object,
were used with a one-dimensional shape. The “w/ high-level" means that the invariant masses of
mbb, mℓνbb, mℓνqq , and mbbWW were calculated from the observed objects, and were added to the
input variables to utilize the high-level features. The BDT was executed using XGBoost [23]. The
MLP model consisted of a stack of Linear, BN layers, and ReLU activation functions. The max
depth in BDT and the number of layers and nodes in MLP were optimized by a grid search. The
table confirms that our model with the best α value shows better performances for both 2HDM and
Z ′ datasets. In comparison to the BDT and simple MLP models, our proposed model can extract
high-level features effectively based on particle decay information.

Our experiments have the following limitation. The training of our model is much slower than the
MLP model, which was approximately 36 batch/s (our model) and 300 batch/s (MLP model). Due to
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Table 1: AUC values of the event classification task for each experimental condition. The AUC
values are an average of 5 runs with different random seeds for the test data. The errors show one
standard deviation. The max depth in BDT is 5 (2HDM) and 4 (Z ′). The number of Linear layers
in MLP is 5 (2HDM) and 4 (Z ′). The number of nodes in each Linear layer is 64 for both datasets.

2HDM Our model BDT MLP

α = 0 best α value low-level w/ high-level low-level w/ high-level

2HDM 0.865 0.893 0.794 0.838 0.862 0.865
± 0.002 ± 0.001 ± 0.001 ± <0.001 ± 0.001 ± 0.001

Z ′ 0.936 0.939 0.915 0.922 0.932 0.933
± <0.001 ± <0.001 ± <0.001 ± <0.001 ± <0.001 ± <0.001

this computational constraint, we were unable to increase the signal types and the number of training
events as we had intended. Additionally, we were interested in conducting a more thorough analysis
of the edge-level outputs, such as the attention weights in the GAT layer, to increase explainability.
Therefore, improving the training speed and explainability is a future subject.

6 Conclusion

In this paper, the decay-aware neural network based on the multi-task learning technique was dis-
cussed. The label of auxiliary task is defined based on the particle decay information to introduce
an inductive bias with our domain knowledge. We successfully trained the event classification task
and the auxiliary task simultaneously using the GNN architecture. Our experiments confirmed that
the event classification performance improved significantly by adding the auxiliary task, and better
performances were achieved compared with BDT and MLP models due to the inductive bias.

Broader Impact

This work can potentially contribute to the explainability of machine learning, which would be
interested in a wide range of scientific communities. In the field of collider physics, researchers have
a deep understanding of data based on particle physics theories and past experimental results. We can
probe behaviors of the machine learning by introducing the domain knowledge as demonstrated in
this paper. We believe that this approach is effective to understand what machine learning has learned
and improve its explainability. This study is aimed at improving a problem in pure fundamental
science, and we do not expect our study to result in a negative social impact.
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