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Abstract

Deconvolving (‘unfolding’) detector distortions is a critical step in the comparison
of cross section measurements with theoretical predictions in particle and nuclear
physics. However, most extant unfolding approaches require histogram binning
while many theoretical predictions are at the level of moments. We develop a new
approach to directly unfold distribution moments as a function of other observables
without having to first discretize the data. Our Moment Unfolding technique uses
machine learning and is inspired by Generative Adversarial Networks (GANs). We
demonstrate the performance of this approach using jet substructure measurements
in collider physics.

1 Introduction

Studying the dependence of the statistical moments of physical observables on various quantities like
the energy scale offers a rich probe into complex scaling relationships essential to the dyanamics
of fundamental physical theories. Summarizing a probability distribution with a small number of
moments makes visualization and interpretation tractable and lends itself to more accurate theoretical
predictions. For example, the full probability densities of hadronic jets cannot be computed from
first principles in perturbative quantum chromodynamics (QCD), but the energy dependence of their
moments can be accurately predicted.

Unfolding (also known as deconvolution) is the process of correcting detector distortions in experi-
mental data, and is necessary for accurately comparing data between experiments and with theoretical
predictions. Typically, entire spectra are unfolded and then moments are computed afterward. In order
to capture the dependence of an observable X’s moments on another quantity Y , the two features
must be simultaneously unfolded. Current unfolding approaches (see e.g. Ref. [1]) discretize the
(X,Y ) support and then unfold the two-dimensional histogram. Through this procedure, the moments
of X can be computed in bins of Y . This binning procedure, however, introduces discretization
artifacts.

One possible solution is to unfold without binning. A number of unbinned unfolding methods
have been proposed [2–7], including approaches that are powered by machine learning [4–7]. First
measurements [8–10] and studies [11] with collider data show that unbinned unfolding is also possible
in practice. By construction, these approaches do not introduce binning artifacts. However, these
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methods offer a generic solution to unfolding entire spectra and therefore may compromise precision
for any particular aspect of the spectrum, such as a small set of moments. We introduce a dedicated
machine learning-based unfolding method to directly unfold the observable moments. This moment
unfolding technique is motivated by the Boltzman equation from statistical mechanics and uses a
structure that is similar to that of a Generative Adversarial Network (GAN) [12]. In particular, we
learn a reweighting function (the analog of the generator) whose form is inspired by the Boltzman
equation so that its parameters can be identified with the observable moments. This function is
optimized by requiring that the reweighted simulation be as similar as possible to the target data
(determined by a discriminator). The approach is similar to the OmniFold method [5] in that it is
based on reweighting simulation, but it is fundamentally different because it is not iterative. That is
to say, in methods such as Omnifold a distinct pair of neural networks is trained each time, “on each
iteration," whereas in the proposed Moment Unfolding method, one pair of neural networks is trained,
only once. We restrict our attention here to a small number of moments. In principle, this approach
could be extended to full distributions, but there are complications due to the partition function that
we leave for future studies.

2 Method

We consider the situation common in particle and nuclear physics where inference is enabled with
a synthetic dataset that includes an emulated detector. Each synthetic collision event comes as a
pair (XT , XD), for XT ∈ RNT and XD ∈ RND , where XT is the pre-detector version of the event
(‘generation’) and XD is the post-detector observation of the event (‘simulation’). In experimental
data, we only have access to the detector-level version (‘data’) so we use the simulation to infer the
pre-detector truth.

To achieve this goal, we propose an unbinned, non–iterative, reweighting based method to unfold the
statistical moments of observables inspired by Boltzmann’s approach used to construct the Maxwell–
Boltzmann distribution [13]. The Maxwell–Boltzmann distribution is one which maximizes the
entropy of an ensemble while holding mean energy constant. Similarly, our method aims to construct
a distribution which maximizes the cross entropy with a target distribution while matching a fixed set
of moments. The proposed generator then, in analogy to the Boltzman factor is

g(x) = eλ1x+···+λnx
n

, (1)
where n is the number of moments being computed. The moments of the resultant distribution are
linear combinations of λi. The weights of this generator are updated until it can reweight the moments
of the generation dataset so that the corresponding simulation dataset is statistically indistinguishable
from the observed data. This method is schematically represented in Fig. 1.

2.1 Machine Learning Implementation

To implement the Moment Unfolding procedure, we modify the learning setup of a GAN [12]. In
a typical GAN, the generator g surjects a latent space onto a data space. Then a discriminator,
d, distinguishes generated examples from real examples. In this case, the latent space probability
density is the simulation density, as illustrated in Fig. 1. These two neural networks are then trained
simultaneously to optimize the binary cross entropy loss functional, where the generator tries to
maximize the loss with respect to g and the discriminator tries to minimize the loss with respect to d.
The weighted binary cross entropy loss functional is

L[g, d] = − 1

N

∑
xdata

[
log

(
d(xdata)

)
+

∑
(xgen,xsim)

g(xgen) log
(
1− d(xsim)

)]
, (2)

where xdata are the detector-level data examples, xsim are the detection level simulation examples,
and xgen are the particle-level simulation (generation) examples. For the empirical studies here, all
neural networks are implemented using the KERAS [14] high-level API with the TENSORFLOW2
backend [15] and optimized with ADAM [16]. The generator function g is parametrized as the
exponential of a polynomial, as described in Eq. (1) above. It is a relatively simple ‘neural network’
with only n trainable parameters, {λi}ni=1 The discriminator function d is parametrized with three
hidden layers, using 50 nodes per layer. Rectified Linear Unit (ReLU) activation functions are used
for the intermediate layers and a sigmoid function is used for the last layer.
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Figure 1: A schematic diagram of the training setup for the moment unfolding discussed in this paper
for automatically unfolding statistical moments. Here, g is the generator and d is the discriminator.
The re-weighted simulation dataset inherits its weight from the matching generation dataset. The
detector emulations are only run once since a new simulated dataset is created via importance
weights and not by changing the features themselves.

3 Case Studies

3.1 Gaussian Example

We begin by attempting to unfold Gaussian data with Gaussian distortions. The truth is drawn from
N (0, 1) and the generation is drawn from N (−0.5, 1). Detector effects are represented by additive
noise that is also Gaussian with distribution N (0, 5). 106 samples are used, with a train–test split of
3 : 1. Since for Gaussian examples there are only finitely many moments to unfold, moment unfolding
is in fact equivalent to unfolding the entire probability density. Figure 2a shows the numerical results
of this unfolding procedure. The success of this procedure may be verified by observing that the
maximum of the loss function is at the true mean, as shown in Fig. 2b. The training is relatively short,
discriminator converges well within 10 epochs of training.
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Figure 2: (a) Histograms of truth, generation, and the reweighted generation for the Gaussian
example. (b) The binary cross entropy loss Eq. (2) for a fixed value of g given by the mean value
shown on the horizontal axis. The correct value is indicated by a vertical red dotted line.
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3.2 Jet Substructure

In this section, we study hadronic jets from simulations of the Large Hadron Collider (LHC) published
in Ref. [5], including detector effects [17]. In order to have access to the truth, both the ‘real’ and
‘synthetic’ datasets are from simulations. One of these simulations plays the role of ‘data’ and one
serves as the synthetic dataset. For simplicity, we consider a one-dimensional case using the jet width
w [18] defined as w = 1

pT,jet

∑
pT,i∆Ri, where the sum runs over all the constituents of a jet and

pT,i, and ∆Ri are the transverse momentum and angular distance from the jet axis, respectively.
Although we focus on the jet width observable, this method can be applied to other jet observables as
well and can readily be conditioned on kinematic properties such as the jet momentum.

In this experiment we attempt to unfold two moments of detector distorted jet substructure data.
The results are presented in Fig. 3a with the corresponding loss function scan shown in Fig. 3b.
Radiation within jets is enhanced at low values of ∆R which leads to the uni-modal distribution
of the jet width that falls off rapidly after about 0.1. These features are present in both the truth
and generation, albeit with a longer tail in truth. Even though the first and second moments of the
reweighted generation match the truth well, the full distributions are not statistically identical. This is
because higher moments are relevant and are not the same between truth and generation.
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Figure 3: (a) Histograms of the jet width at particle-level. (b) The binary cross entropy loss Eq. (2)
for fixed values of g given by the moments indicated on the horizontal axis. These are two
dimensional slices of a three dimensional plot, with the slice taken at the true value of the other
moment. The correct values, known prior to the training, are indicated by a vertical dotted lines. The
vertical dotted lines (true moments) coincide with the peaks of the loss curves (predicted moments)
with a mean absolute error of ≤ 0.02%.

4 Conclusions and Outlook

In this paper, we analyzed the impediments to accurately unfolding detector data to facilitate compar-
isons with theoretical calculations without introducing binning artifacts. To that end we proposed
Moment Unfolding as a novel, flexible, unbinned, and non-iterative reweighting technique to unfold
the statistical moments of jet observables from detector data. Moment Unfolding showed promising
results when applied to both Gaussian datasets as well as detector data from the LHC, although
future work will be required to study higher-dimensional examples as well as to compare with other
unfolding approaches.

A key question for future work is whether this method could be used to unfold infinitely many
moments, thereby unfolding the entire probability density. This would involve answering important
questions about partition function normalization, stability, and overlapping support, which become
salient in the infinite moment limit. We hope that future algorithmic and implementation developments
will enable more effective strategies for moment unfolding in particle physics and beyond.

5 Broader Impacts

Deconvolution is an essential operation in any signal processing or image processing procedure
that involves a signal convoluted with well modelled background effects. Effective and accurate
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deconvolution methods find utility in fields ranging from biology, physiology, and medical device
technology [19], to seismology [20], to spectral astronomy [21]. Deconvolution is also a critical step
in various industry areas such as computer vision [22], and finance [23]. The moment unfolding
algorithm we suggest is data set agnostic, and can be applied to data from a diversity of fields.

Code and Data

The code for this paper can be found at https://github.com/hep-lbdl/MomentUnfolding,
which makes use of JUPYTER notebooks [24] employing NUMPY [25] for data manipulation and
MATPLOTLIB [26] to produce figures. All of the machine learning was performed on an Nvidia
RTX6000 Graphical Processing Unit (GPU) and reproducing the entire notebook takes less than five
minutes. The physics data sets are hosted on Zenodo at [5, 27].
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