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Abstract

Accurate observation of two or more particles within a very narrow time window
has always been a great challenge in modern physics. It opens the possibility for
correlation experiments, as e.g. the important Hanbury Brown-Twiss experiment,
leading to new physical insights. For low-energy electrons, one possibility is to use
a micro-channel plate with subsequent delay-lines for the readout of the incident
particle hits. With such a Delay-Line Detector the spatial and temporal coordinates
of more than one particle can be fully reconstructed as soon as both particles have a
larger separation than what is called the dead radius. For events where two electrons
are closer in space and time, the determination of the individual positions of the
particles requires elaborated peak finding algorithms. While classical methods
work well with single particle hits, they fail to identify and reconstruct events
caused by multiple particles when they arrive close in space and time. To address
this challenge, a new spatiotemporal machine learning model is developed to
identify and reconstruct the position and time of such multi-hit signals. The model
achieves a much better resolution for near-by particle hits compared to the classical
approaches, reducing the dead radius by half. This shows that machine learning
models can be effective in improving the spatiotemporal performance of Delay-Line
Detectors.

1 Introduction

The detection of single particles, such as atoms, ions, electrons and highly energetic photons is
the cornerstone of many fields in fundamental physics research. Typically, the signal of a single
particle is too faint to be measured directly and requires amplification. This is usually achieved
with electron avalanches, as for example in Photon Multiplier Tubes (PMTs) [1] and Multi-Channel
Plates (MCPs) [2]. MCPs offer the advantage that the incident particle can be spatially resolved with
a phosphor screen or a wire-grid. The latter system is called a Delay-Line Detector (DLD) [3], a
sophisticated spatially and temporally resolving detector schematically shown in Figure 1. When one
or more electrons hit the MCP, they get multiplied and the resulting electron shower hits the wire grid
consisting of three identical layers that are rotated by 120◦. The signals from the wires (six channels)
and the MCP (one channel) get amplified and an analog-to-digital converter (ADC) discretizes the
signals with a bin size of 0.8 ns. By determining the peak positions in the data, one can calculate
the position and time, (x, y, t), for each incoming particle. DLDs can be used for ions, electrons
and photons with energies high enough to emit an electron from the front side of the MCP. In the
field of ultra-fast atomic physics, such detectors are e.g. used for the so called reaction microscopes
(Cold Target Recoil Ion Momentum Spectroscopy COLTRIMS) [4], a technique that allowed to
resolve the correlation of two simultaneously emitted electrons in non-sequential double ionization
(NSDI) [5]. In another seminal experiment, a Delay-Line Detector was used to compare the bunching
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Figure 1: Schematic display of the experimental setup.

and antibunching behavior of free bosonic particles versus free fermionic particles [6]. There is
redundant information for each incident particle provided by three layers of delay lines. This helps to
disentangle the signals of two or more incident particles that hit the detector simultaneously. However,
despite the additional information there still exist limitations regarding the multi-hit capability of
these detectors. If the two particles arrive close in both location and time, their signals overlap and
cannot be easily assigned to the individual particles.

Machine learning has seen an explosive use in physics, including applications of classification,
regression, anomaly detection, generative modeling and others. Most of these studies exclusively
focus either on the spatial or on the temporal domain. Recently spatiotemporal studies have started
gaining traction in physics and other fields [7–18].

In our work, we focus on challenging spatiotemporal reconstruction scenarios where individual DLD
signals are close in both space and time. We show that deep learning models can significantly enhance
the multi-hit capability of Delay-Line Detectors compared to classical reconstruction methods.

2 Machine learning approach

The ML approach consists of a Hit Multiplicity Classifier (HMC) and Deep Peak Finder (DPF)
models. The HMC works with normalized input and consists of a convolutional neural network
(CNN) for each channel except the MCP. The outputs of the CNNs are concatenated and a final dense
network with softmax activation for the last layer outputs probabilities for the four classes consisting
of one to four particles. For inference, events that are classified as doubles are sent to the DPF where
the peak positions for each channel are predicted separately. For the DPF we focus on double-hit
events only and leave higher-multiplicity events to future work. The DPF consists of two bidirectional
GRU (Gated Recurrent Unit) layers [19] followed by a dense network. Because of differences in the
data, there are two models, one for the channels except MCP and one for the MCP. In the following
we will call them DPF and DPF (MCP).

The signals are approximately additive and so it is possible to simulate multi-hit data for training.
First, a classical peak finding algorithm is used to find the peaks in the real data. Then, the data is
filtered to only keep single-hit events. Events with more than one peak in a channel are treated as
multi-hit events. To simulate a double-hit event, two single-hit events are randomly shifted and added.
Similarly for triple- and quadruple-hit events. Note that the peak positions in the simulated events are
known to the same accuracy as for the single-hit events.

In training, the hyperparameters for the HMC and the DPF are optimized on a smaller dataset using
Keras Tuner [20] and the Hyperband optimizer [21]. The HMC is trained for 300 epochs on ca.
202k simulated events split evenly into single/double/triple/quadruple using early stopping, model
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Figure 2: Examples of simulated double events. Dotted blue: two single peaks, thick blue: sum of
the singles. Vertical lines: dashed: fit-based classical method, filled: Deep Peak Finder.

checkpoints and reduction of the learning rate on plateau. The DPF and DPF (MCP) are trained
on 180k and 100k simulated doubles respectively for 300 epochs. All models are trained using the
ADAM [22] optimizer. Training took around 3 h on Google Colab Pro Plus per model.

3 Results

Based on ca. 106k evenly distributed test events, the HMC model has a test accuracy of acc = 0.9951.
The AUC is > 0.9998 for every class (one-vs-all). Note that the HMC works on normalized data
to avoid learning the higher amplitudes due to the data being linear combinations of real data. On
training data the root mean square error (RMSE) for the DPF is rmsetrain = 1.03 ns and the mean
average error (MAE) is maetrain = 0.25 ns. Evaluated on 1.2M simulated double-hit events, the
RMSE for the peak position rmsetest = 1.72 ns and the MAE is maetest = 0.24. For comparison,
the bin size of the data is 0.8 ns. For the DPF (MCP) the results are similar: On 100k simulated
MCP double peak signals: rmsetrain = 0.90 ns and rmsetest = 0.83 ns, maetrain = 0.27 ns and
maetest = 0.27 ns. In Figures 2 and 3 comparisons between the classical methods and the DPF are
shown. The first shows three simulated double peaks together with their underlying singles. The
vertical lines show the classical fit-based prediction and the prediction from the DPF. The fit-based
method is what was used to create the labels for the singles. It consists of quadratic fits around the
maximal values. Figure 3 shows the RMSE as a function of peak separation for different methods.
The first method is a simulation of the the hardware-based Constant-Fraction-Discriminator (CFD)
which adds an inverted and shifted copy of the signal to itself. The resulting zero-crossing then
indicates the peak. The second method is the above mentioned fit-based technique. The third is the
Mean Pulse Curve Fit (MPCF) method. First, the mean pulse from 10k single-hit signals is calculated.
Then, for doubles, the sum of two mean pulses is fitted to the data. The fit parameters are the two
peak positions, amplitudes and scalings in the time direction.

In order to test the HMC, DPF and DPF (MCP) on real data, we have performed a separate experiment.
We put a grid made of copper in front of the electron source. The shadow of the grid is projected
onto the DLD as shown in Figure 4 (a). How clear the grid appears in the reconstructed positions
is an indicator for the quality of the method. If the method is inaccurate, then the grid will look
washed-out, because events will appear at positions where none should be. This will become more
severe if we look at the distances between the two hits ∆x and ∆y: On the right side (b,c,d,e) of
Figure 4 the position differences are shown as 2D histogram. Figure 4 (b), shows only differences
between uncorrelated single-hit events classically evaluated and a good resolution of the grid. This
can be taken as a reference for the best possible resolution. The second plot, (c), shows double-hit
events evaluated with the CFD-method. There is a star-shaped dead region with a maximal extension
of about 30mm where most events cannot be reconstructed. There are also weak 6-folded artifacts.
The third plot, (d), shows double-hit events evaluated with the classical peak finding algorithm. There
are very strong 6-folded artifacts and the dead radius (white region) is at about 20mm. The fourth
plot, (d), shows the same double-hit events evaluated with the DPF. While the 6-folded artifacts are
still visible, they are much weaker and almost gone. The dead radius is smaller at about 10mm.
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Figure 3: Root mean squared error as a function of the peak separation for the channels (not MCP).
For peak positions smaller than 15–20 ns, which is around the width of a typical peak, the fit-based
and Mean Pulse Curve Fit (MPCF) methods decrease drastically in performance, while the Deep
Peak Finder (DPF) stays good.
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Figure 4: A grid is put in front of the MCP and is projected onto the detector (a). The plots (b-e) show
histograms of the position differences between particle pairs calculated with the different methods.

4 Interpretation and conclusion

The Hit Multiplicity Classifier works well with an exceptional AUC of > 0.9998. Figure 2 shows
clearly how the Deep Peak Finder finds the correct peaks even when they are close. From Figure 2
one can see that a single peak typically has an extension of ca. 20-30 ns. Thus, for peak separations
larger than this order we expect the peaks not to influence each other and no disturbance of the peak
position determination happens. Indeed, for > 30 ns separations, in Figure 3 the fit-based method
has almost zero RMSE because this method is what was used to create the labels. Note that in this
region the DPF still performs well with an RMSE about 1/4 of the bin width which is 0.8 ns. For
smaller separations however, one would expect the peaks to influence each other and disturb the peak
position determination. This is confirmed in Figure 3 where for about 0.9–25 ns peak separation the
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DPF clearly wins over the classical peak finder in terms of RMSE and in Figure 2 in the middle
and right plot the DPF finds the underlying peaks better. Once the peaks get too close, the classical
peak finder only finds one peak which is then counted as two in our evaluation. Thus, for the case
where the peaks are < 0.9 ns apart, the classical wins again in 3. Note that here the classical is
actually overrated, because we give it the information that there have to be two peaks. The grid plots
in Figure 4 confirm that our model also performs well on real data where no ground truth exists.
Improvements over the classical methods are 1) smaller dead radius of ca. 10 mm as opposed to the
20 mm of the fit-based or 30 mm of the CFD method, 2) less artifacts and 3) a better resolution of
the grid for smaller separations. Note that these absolute numbers for the dead radius depend on the
initial width of the peaks, thus all methods will give smaller dead radii if the peak width gets reduced
due to hardware changes.

As this evaluation is applicable for any existing delay-line-based detector with the possibility of
analog read-out, it is highly relevant for many ultrafast pulsed applications like non-sequential double
ionization, atom probe tomography, ultrafast electron microscopy or other correlation experiments like
the fermionic Hanbury Brown-Twiss experiment [23, 24]. Further plans include end-to-end prediction
of the particle positions and times instead of only predicting the peak positions, implementation of the
models with SOFIE [25] such that they can be used on live data, and other model architectures like
transformers [26]. Currently, there are no on-going experimental studies or correlation experiments
that take advantage of triplet and quadruplet events. However, that may change in the future.
Therefore, we leave higher multiplicity event reconstruction to future work.

Potential broader impact of this work

This work contributes to the analysis of data generated by a specific kind of particle detectors called
Delay-Line Detectors. Combined with correlation experiments, this will hopefully one day lead to
better understanding of the fundamental interactions between particles and ultimately to a better
understanding of the universe. To the authors’ knowledge there are no direct ethical aspects to
consider. Indirect ethical aspects are difficult to grasp, but to the authors’ knowledge no obvious
indirect ethical aspects are to consider in the near future. Future societal consequences are the same
as for all fundamental physics research and almost impossible to foresee.
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