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Abstract

Astrophysical sources emit radio emissions that are detectable by radio telescopes.
Due to the volume of data produced by radio telescopes, efficient computational
methods for automatically detecting signals of interest are required. The most
basic of these methods involves fitting a physical model of frequency dispersion
to the observed signal, and flagging a detection if the dedispersed signal has high
power. This method can successfully detect single pulses, but might miss detecting
other interesting astronomical signals. We propose a method for dedispersion that
does not use a physical model but instead uses a flexible element of a reproducing
kernel Hilbert space (RKHS). Our method can outperform classical dedispersion
on a benchmark of real and synthetic data consisting of signals that are pulse-like,
physical, and non-physical origins.

1 Background

Time-domain discoveries in astronomy As radio waves travel from a source to a radio telescope,
low frequency components of the signal experience a relative delay due to electron interference
between the source and telescope. In a certain idealised setting, the time delay t̂(ν) experienced by
component with frequency ν is proportional to the line integral of the electron density ne between
the source and observer divided by ν2 [Lorimer and Kramer, 2012, Equation 4.4]. That is,

t̂(ν) = Kν−2

∫
L

ne(x) dx︸ ︷︷ ︸
DM

, (1)

where K is a physical constant, L is the line connecting source to observer, and DM is called the
dispersion measure. Assuming a step response at the source, this physical model can be used to
describe the left side of Figure 1, but not the origin of the signal itself. One type of pulse signal of this
nature that does not have an explanation are called fast radio bursts (FRBs) [Lorimer et al., 2007].

Reproducing Kernel Hilbert Spaces Given a set of points and a hypothesis class H of functions,
a commonly encountered problem throughout quantitative sciences is to fit a function f∗ ∈ H to
the set of points. In machine learning, this is often performed with the hope that the fitted function
generalises to a set of unseen points. Two popular choices for the hypothesis class H are neural
networks and reproducing kernel Hilbert spaces (RKHS). An RKHS is a rich class of (infinite
dimensional) functions with special structure that allow them to be manipulated using (finitely many)
computer operations. To every RKHS Hk is associated a unique positive semidefinite kernel k (and
conversely), which describes the smoothness of the functions in the RKHS. Unlike neural networks,
kernel methods can be easy to fit when appropriately regularised since they admit a representation of
a simple form. We use a special case of Schölkopf et al. Theorem 1.
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Figure 1: (Left) Two chunks Yc of simulated data. There are n = 128 discrete frequency bins ranging
from 1.2 GHz to 1.5 GHz. The data represents a duration of x seconds with T = 100 discrete time
steps. Each element yij of this matrix is either 0 (purple) or 1 (yellow). (Right) Overlay of best-fitting
FRB using the physical model (1)–(3).

Theorem 1. Let λ > 0 be a regularisation parameter, X a set and L : (X × R2)N → R
⋃
{∞} an

arbitrary loss function. Let Hk be an RKHS with kernel k. Then each minimiser f ∈ Hk of
N∑
i=1

L
((

xi, yi, f(xi

))
+

λ

2
∥f∥2Hk

admits a representation of the form f(x) =
∑N

i=1 αik(xi, x).

When coupled with (strong) convexity of the regularised loss, such problems over RKHS can be
solved by application of convex optimisers to find (unique) optimal representer coefficients {αi}Ni=1.

2 Signal processing for astronomy data

Dataset The Single-dish PARKES for finding the uneXpected [SPARKESX; Yong et al., 2022]
dataset is a publicly available1 compilation of real and simulated high-time resolution observations of
the Parkes (Murriyang) radio telescope. SPARKESX is designed as a data challenge to test different
search methods and pipelines. SPARKESX labels and benchmark results with the standard pulsar
search software, PRESTO, are provided for comparison with other methods.

SPARKESX consists of a range of artificially injected signals, including expected astrophysical
signals (e.g., pulsars, FRBs, and stellar flares) and unexpected events (e.g., negatively dispersed
pulses, splines, and steganography images). For further details on the types of signals generated,
see Yong et al. [2022]. We consider the following event groups from SPARKESX: simplepulse,
known+rfi, unknown+rfi, combo+rfi, and real+combo.

Let Y denote an n×m binary matrix representing a datastream of 1-bit data. Here n is the number of
discrete frequency bins and m is the number of discrete timesteps, which may be infinite for streaming
data. We denote the ijth element of Y by yij . We use xij = (νi, tj) to denote the corresponding
discrete frequency-time pair. Let T denote the length of some time window and define the cth chunk
Yc of Y as the n× T submatrix Yc = Y{:,T c:T (c+1)}. Representative data is shown in Figure 1. For
our experiments, we only use the 1-bit single beam of the multibeam survey from SPARKESX. This
single-bit is used as data of the form Y , and each chunk Yc is associated with a binary value zc
indicating whether a signal of interest is present in the chunk. Each signal is also associated with
attributes such as the amplitude A, width W and dispersion measure DM (in the case of a pulse). Each
dataset contains 51,200 seconds ≈ 14 hours of data, except for real+combo which contains twice
this duration. In total, this represents about 3.6 days worth of data, with a total memory footprint of
14.36GB. Roughly 10 % of the data contains an event.

Dedispersion using physical models For a signal that has undergone dispersion, pixels that lie
close to the parametric curve

(
t̂(ν)− t0, ν

)
in the t− ν plane are more likely to be 1 than 0, where t0

is some offset indicating the start datum of the FRB. This may be modelled by setting the probability
pij that the ijth pixel is 1 to

pij = max
{
aw

(
tj − t̂(νi)

)
, b
}
, (2)

1https://doi.org/10.25919/fd4f-0g20.
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where 0 < b < a < 1 are hyperparameters and w is some window function, upper bounded by 1 and
decaying to zero as it’s argument goes to ±∞. For example, Gaussian and rectangular windows are
w (z) = exp(−z2/ℓ2) and w (z) = Θ (|z| − ℓ) , where 0 < ℓ < ∞ and Θ is the step function.

Given a candidate DM and t0 with fixed hyperparameters ℓ, a and b, the process of dedispersion is
to adjust each frequency band in the signal for the time delay t̂(ν) experienced by that frequency
band. After dedespersion, the total power of the signal at the source can be computed by summing
the squared amplitudes of the signals in each frequency band. If this power is large, it indicates that
the observed signal can be explained by a powerful pulse with the candidate DM and datum t0. The
power of the signal can be written in terms of an optimisation problem,

Pc = max
DM,t0

n∑
i=1

T (c+1)∑
j=Tc

(
yijpij

)2
. (3)

The right two plots in Figure 1 shows pij using the optimal DM and t0 corresponding with the
solution of (3). To solve the optimisaton problem, a fine-grained grid search can be used over the
space of DM and t0. Software such as PRESTO can perform this search, as reported by Yong et al..

Detecting signals using an RKHS The physical model (1)–(3) is a useful inductive bias to search
for dispersed pulses, such as FRBs. However, more complicated signals, such as that depicted in
the second column of Figure 1, cannot be easily detected using this model. We propose to alter the
process of dedispersion by using an element of an RKHS instead of the hypothesis class of dispersed
pulses. The process of fitting the element f∗ of the RKHS Hk and then computing the power Pc is
described in terms of an optimisaton problem,

f∗ = argmin
f∈Hk

n∑
i=1

T (c+1)∑
j=Tc

− log p
(
yij | f(xij)

)
+

λ

2
∥f∥2Hk

, Pc =

n∑
i=1

T (c+1)∑
j=Tc

(
yijf

∗(xij)
)2
,

where p
(
yij | f(xij)

)
is the evaluation of the likelihood of a minimal exponential family [Deisenroth

et al., 2020, § 6.6] with canonical parameter f(xij), as considered by others Canu and Smola [2006].
In our setting, we use a Bernoulli likelihood, yielding kernel logistic regression [Zhu and Hastie,
2001]. This objective is strongly convex [Wainwright et al., 2008, Proposition 3.1], and so admits a
unique global minima in the representer coefficients αi [Wright and Recht, 2022, Theorem 2.8].

3 Experiments and results

We deploy our method2 on all datasets in the SPARKESX data challenge, and compare our results
with those obtained using PRESTO as reported in Yong et al. [2022]. We note that Yong et al. [2022]
use nominal PRESTO parameters, and high values of DM were not searched for. We use a Bernoulli
likelihood. We set λ = 0.1. We use a squared exponential kernel for k, with a lengthscale of 1.
We find the representer coefficients αi using Newton’s method initialised at a vector of zeros. We
set the length T of each chunk to 50 discrete steps, where 4096 steps measures 1.024 seconds. For
each dataset, we run 64 parallel processes across different chunks c on a 64-core (CPU-based) Dell
PowerEdge C6525 Server. This results in a computation time roughly 36 times slower than real-time.

Due to the highly imbalanced nature of the data (interesting events are rare), accuracy is not the most
meaningful metric to report results. Instead, true positive rate (TPR) might apply to the hypothetical
scenario where a computer produces candidate events for a scientist to manually inspect with a fixed
time budget, and it is desirable that as many true events are selected. We set this fixed budget to be
the top 10% most likely anomalous events. To even further break down our analysis, we view TPR as
a function of three attributes of simulated data: DM, amplitude A and signal width W . This helps us
see where our method performs well in the parameter-space of simulated events. See Figure 2.

We observe that on more complicated signals beyond idealised simplepulse, our method outper-
forms PRESTO. This is expected behaviour, since the strong inductive bias is completely aligned
with the idealised signals in simplepulse. However, for known+rfi dataset, which includes more
realistic pulses, long duration pulses, flares and radio frequency interference (RFI), our method
usually outperforms PRESTO. For non-physical signals, real unknown data, and mixed settings, our
method almost always performs as well as or better than PRESTO, sometimes by a large margin.

2https://github.com/yongsukyee/sparkesXML_klr/
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Figure 2: TPR as a function of attributes logA, DM and logW overlayed on top of histograms
showing frequency of attributes for each dataset. Our proposed RKHS method can outperform
the matched filter using PRESTO in some settings. (Top to Bottom) simplepulse; known+rfi;
combo+rfi; real+combo; unknown+rfi; All data. Some datasets do not have a DM parameter.

4 Conclusion, limitations and future work

Using an RKHS to detect structured signals is promising, both for detecting idealistic simple pulses
and for detecting new types of interesting signals. Our current method on our hardware operates at
about 36 times slower than real-time, but individual chunks may be processed in parallel. Increasing
the speed will allow for real-time deployment of our system. We use a single length-scale to fit our
RKHS element, but in future we may simultaneously fit in parallel multiple RKHS elements each
using a different lengthscale. The resulting collection of powers could be used inside another ML
model such as a one-class support vector machine to detect whether the signal is noise or interesting.
Features obtained as solutions to optimisation problems, such as those used here, can be differentiated
without differentiating through the solver using the implicit function theorem Gould et al. [2022], so
that deep learning extensions might also be considered. Finally, non-binary data could be considered
by using kernel binomial regression instead of kernel logistic regression.
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