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Abstract

Predicting the binding structure of a small molecule ligand to a protein—a task
known as molecular docking—is critical to drug design. Recent deep learning meth-
ods that treat docking as a regression problem have decreased runtime compared to
traditional search-based methods but have yet to offer substantial improvements in
accuracy. We instead frame molecular docking as a generative modeling problem
and develop DIFFDOCK, a diffusion generative model over the non-Euclidean
manifold of ligand poses. To do so, we map this manifold to the product space
of the degrees of freedom (translational, rotational, and torsional) involved in
docking and develop an efficient diffusion process on this space. Empirically,
DIFFDOCK obtains a 38% top-1 success rate (RMSD<2Å) on PDBBind, signifi-
cantly outperforming the previous state-of-the-art of traditional docking (23%) and
deep learning (20%) methods. Moreover, DIFFDOCK has fast inference times and
provides confidence estimates with high selective accuracy.

1 Introduction

A crucial task in computational drug design is molecular docking—predicting the position, orientation,
and conformation of a ligand when bound to a target protein—from which the effect of the ligand
(if any) might be inferred. Traditional approaches for docking [1, 2] rely on scoring-functions that
estimate the correctness of a proposed structure, or pose, and an optimization algorithm that searches
for the global maximum of the scoring function. However, since the search space is vast and the
landscape of the scoring functions rugged, these methods tend to be too slow and inaccurate.

We develop DIFFDOCK, a diffusion generative model (DGM) over the space of ligand poses for
molecular docking. We define a diffusion process over the degrees of freedom involved in docking:
the position of the ligand relative to the protein (locating the binding pocket), its orientation in the
pocket, and the torsion angles describing its conformation. DIFFDOCK samples poses by running the
learned (reverse) diffusion process, which can be intuitively viewed as the progressive refinement of
random poses via updates of their translations, rotations, and torsion angles (Figure 1).

Empirically, on the standard blind docking benchmark PDBBind, DIFFDOCK achieves 38% of
top-1 predictions with ligand root mean square distance (RMSD) below 2Å, nearly doubling the
performance of the previous state-of-the-art deep learning model (20%). DIFFDOCK significantly
outperforms even state-of-the-art search-based methods (23%), while still being 3 to 12 times faster
on GPU. Moreover, it provides an accurate confidence score of its predictions, obtaining 80%
RMSD<2Å on its most confident third of the previously unseen complexes.
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Figure 1: Overview of DIFFDOCK. Left: The model takes as input the separate ligand and protein
structures. Center: Randomly sampled initial poses are denoised via a reverse diffusion over
translational, rotational, and torsional degrees of freedom. Right:. The sampled poses are ranked by
the confidence model to produce a final prediction and confidence score.

2 Method

We can regard a pose x as an element in R3n. However, this encompasses far more degrees of
freedom than are relevant. Traditional docking methods, as well as most ML ones, take as input a
seed conformation c ∈ R3n and change only the relative position and the torsion degrees of freedom.
The space of ligand poses consistent with c is, therefore, an (m + 6)-dimensional submanifold
Mc ⊂ R3n. We follow this paradigm, and formulate molecular docking as learning a probability
distribution pc(x | y) over the manifoldMc, conditioned on a protein structure y.

DGMs on submanifolds have been formulated by [3] in terms of projecting a diffusion in ambient
space onto the submanifold. However, the kernel p(xt | x0) of such a diffusion is not available in
closed form and must be sampled numerically with a geodesic random walk. We instead define a
one-to-one mapping to another, “nicer” manifold where the diffusion kernel can be sampled directly
and develop a DGM in that manifold. Specifically, we define a continuous family of ligand pose
transformations corresponding to the m+ 6 degrees of freedom, and use it to lift points onMc to
the product space of the corresponding groups—which is itself a manifold.

Ligand pose transformations We associate translations of ligand position with the 3D translation
group T(3), rigid rotations of the ligand with the 3D rotation group SO(3), and changes in torsion
angles at each rotatable bond with a copy of the 2D rotation group SO(2). More formally, we define
operations of each of these groups on a ligand pose c ∈ R3n. The translationAtr : T(3)×R3n → R3n

is defined straightforwardly as Atr(r,x)i = xi+ r using the isomorphism T(3) ∼= R3 where xi ∈ R3

is the position of the ith atom. Similarly, the rotation Arot : SO(3) × R3n → R3n is defined by
Arot(R,x)i = R(xi− x̄)+ x̄ where x̄ = 1

n

∑
xi, corresponding to rotations around the (unweighted)

center of mass of the ligand. Many valid definitions of a change in torsion angles are possible, as the
torsion angle around any bond (ai, bi) can be updated by rotating the ai side, the bi side, or both. To
disentangle it from rotations or translations, we define changes of torsion angles such that it causes a
minimal perturbation (in an RMSD sense) to the structure:
Definition. Let Bk,θk(x) ∈ R3n be any valid torsion update by θk around the kth ro-
tatable bond (ak, bk). We define Ator : SO(2)m × R3n → R3nsuch that Ator(θ,x) =
RMSDAlign(x, (B1,θ1 ◦ · · ·Bm,θm)(x)) where θ = (θ1, . . . θm) and RMSDAlign(x,x′) =
argminx†∈{gx′|g∈SE(3)} RMSD(x,x†)

This means that we apply all the m torsion updates in any order and then perform a global RMSD
alignment with the unmodified pose. The definition is motivated by ensuring that the infinitesimal
effect of a torsion is orthogonal to any rototranslation, i.e., it induces no linear or angular momentum:
Proposition 1. Let x(t) := Ator(tθ,x) for some θ and where tθ = (tθ1, . . . tθm). Then the linear
and angular momentum are zero: d

dt x̄|t=0 = 0 and
∑
i(xi − x̄)× d

dtxi|t=0 = 0 where x̄ = 1
n

∑
i x.

Now consider the product space P = T3 × SO(3) × SO(2)m and define A : P × R3n → R3n

as A((r, R,θ),x) = Atr(r, Arot(R,Ator(θ,x))). These definitions collectively provide the sought-
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after product space corresponding to the docking degrees of freedom. Indeed, for a seed ligand
conformation c, we can formally define the space of ligand posesMc = {A(g, c) | g ∈ P}.
We now proceed to show how the product space can be used to learn a DGM over ligand poses in
Mc. First, we need a theoretical result (proof in Appendix A):

Proposition 2. For a given seed conformation c, the map A(·, c) : P→Mc is a bijection.

which means that the inverse A−1
c :Mc → P given by A(g, c) 7→ g maps ligand poses x ∈Mc to

points on the product space P. We are now ready to develop a diffusion process on P.

To implement a diffusion model on P, it suffices to develop a method for sampling from and
computing the score of the diffusion kernel on P. Furthermore, since P is a product manifold, the
forward diffusion proceeds independently in each manifold [4], and the tangent space is a direct sum:
TgP = TrT3 ⊕ TRSO(3)⊕ TθSO(2)m ∼= R3 ⊕ R3 ⊕ Rm where g = (r, R,θ). Thus, it suffices to
sample from the diffusion kernel and regress against its score in each group independently.

In all three groups, we define the forward SDE as dx =
√
dσ2(t)/dt dw where σ2 = σ2

tr, σ
2
rot,

or σ2
tor for T(3), SO(3), and SO(2)m respectively and where w is the corresponding Brownian

motion. Since T(3) ∼= R3, the translational case is trivial. The diffusion kernel on SO(3) is given
by the IGSO(3) distribution [5, 6] and its score is∇ ln pt(R

′ | R) = ( ddω log f(ω))ω̂ ∈ TR′SO(3),
where R′ = R(ωω̂)R is the result of applying Euler vector ωω̂ to R. Finally, the SO(2)m group is
diffeomorphic to the torus Tm, on which the diffusion kernel is a wrapped normal distribution with
variance σ2(t).

Architecture Although we have defined the diffusion kernel and score matching objectives on P,
we nevertheless develop the training and inference procedures to operate on ligand poses in 3D
coordinates directly to leverage SE(3) equivariant networks. The score model and confidence model
have similar architectures except for the space of their output. The output of the score model must be
in the tangent space TrT3 ⊕ TRSO(3)⊕ TθSO(2)m, which corresponds to equivariant translation
and rotation (Euler) vectors, and scores on invariant torsion angles. The confidence model outputs a
single invariant scalar. The architectural components are detailed in Appendix C.

Training and inference The training and inference procedures technically depend on the choice
of seed conformation c used to define the mapping betweenMc and the product space. However,
providing a definite choice of c to the score model introduces an arbitrary inference-time parameter
that may affect the final predicted distribution, which is undesirable. Thus, we develop approximate
training and inference procedures that remove the dependence on the c, which work quite well in
practice. See Appendix B for further details.

Confidence model. With a trained diffusion model, one can sample an arbitrary number of ligand
poses from the posterior distribution. However, researchers are often interested in seeing only one or
a small number of predicted poses and an associated confidence measure for downstream analysis.
Thus, we train a confidence model over the poses sampled by the diffusion model and rank them
based on its confidence that they are within the error tolerance. The top-ranked ligand pose and the
associated confidence are then taken as DIFFDOCK’s top-1 prediction and confidence score.

In order to collect training data for the confidence model d(x,y), we run the trained diffusion model
to obtain a set of candidate poses for every training example and generate labels by testing whether
or not each pose has RMSD below 2Å. The confidence model is then trained with cross-entropy loss
to correctly predict the binary label for each pose. During inference, the diffusion model is run to
generate N poses in parallel, which are passed to the confidence model that ranks them based on its
confidence that they have RMSD below 2Å.

3 Experiments

Experimental setup. We evaluate our method on the complexes from PDBBind [7], a large collection
of protein-ligand structures collected from PDB [8], which was used with time-based splits to
benchmark many previous works [9, 10, 11]. We test models in the setting of blind docking, where,
as commonly done, we provide to the methods the bound protein structure but no information on the
ligand pose or pocket. Details about the experimental setup, data, baselines, and implementation are
in Appendix D.3 and all code is available at anonymous.4open.science/r/DiffDock.
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Table 1: PDBBind blind docking. Percentage of predictions with RMSD < 2Å and the median
RMSD. For our method in parenthesis we specify the number of poses sampled from the generative
model. top-1 refers to the highest ranked prediction, top-5 to the most accurate pose out of the first 5.
* indicates that the method runs exclusively on CPU, “-" means not applicable; some cells are empty
due to infrastructure constraints. For TANKBind, the runtimes for the top-1 and top-5 predictions are
different. Further baselines and evaluation metrics are in Appendix E.

Top-1 RMSD (Å) Top-5 RMSD (Å) Average
Method %<2 Med. %<2 Med. Runtime (s)

QVINAW [12] 20.9 7.7 49*
GNINA [13] 22.9 7.7 32.9 4.5 127
SMINA [14] 18.7 7.1 29.3 4.6 126*
GLIDE [2] 21.8 9.3 1405*
EQUIBIND [9] 5.5 6.2 - - 0.04
TANKBIND [11] 20.4 4.0 24.5 3.4 0.7/2.5

DIFFDOCK (10) 34.5±0.3 3.61±0.05 40.1±1.1 2.79±0.09 10
DIFFDOCK (40) 37.5±0.5 3.46±0.04 43.3±0.5 2.53±0.05 40

Accuracy and runtime. DIFFDOCK significantly outperforms all previous methods (Table 1). In
particular, DIFFDOCK obtains an impressive 37.5% top-1 success rate (i.e., percentage of predictions
with RMSD <2Å) when sampling 40 poses and 34.5% when sampling just 10. This performance
vastly surpasses that of state-of-the-art commercial software such as GLIDE (21.8%) and the previous
state-of-the-art deep learning method TANKBind (20.4%). DIFFDOCK holds its superior accuracy
while being (on GPU) 3 to 12 times faster than the best search-based method, GNINA (Table 1).
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Figure 2: Selective accuracy. Percentage
of predictions with RMSD below 2Å when
only making predictions for the portion
of the dataset where DIFFDOCK is most
confident.

Selective accuracy of confidence score. We investigate
the selective accuracy of the confidence model across
different complexes by evaluating how DIFFDOCK’s
accuracy increases if it only makes predictions when
the confidence is above a certain threshold, known as
selective prediction. In Figure 2, we plot the success
rate as we decrease the percentage of complexes for
which we make predictions, i.e., increase the confidence
threshold. When only making predictions for the top
one-third of complexes in terms of model confidence, the
success rate improves from 38% to 80%. Additionally,
there is a high Spearman correlation of 0.74 between
DIFFDOCK’s confidence and the negative RMSD. Thus,
the confidence score is a good indicator of the quality
of DIFFDOCK’s top-ranked sampled pose and provides
a highly valuable confidence measure for downstream
applications.

4 Conclusion

We presented DIFFDOCK, a diffusion generative model tailored to the task of molecular docking.
This represents a paradigm shift from previous deep learning approaches, which use regression-based
frameworks, to a generative modeling approach that is better aligned with the objective of molecular
docking. To produce a fast and accurate generative model, we designed a diffusion process over the
manifold describing the main degrees of freedom of the task via ligand pose transformations spanning
the manifold. Empirically, DIFFDOCK outperforms the state-of-the-art by very large margins on
PDBBind, has fast inference times, and provides confidence estimates with high selective accuracy.
Thus, DIFFDOCK can offer great value for many existing real-world pipelines and opens up new
avenues of research on how to best integrate downstream tasks, such as affinity prediction, into the
framework and apply similar ideas to protein-protein and protein-nucleic acid docking.
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5 Broader Impact

Molecular docking is a crucial task for computational drug discovery. Thus, a method like DIFFDOCK
that speeds up blind docking and improves the accuracy can help pave the path towards faster drug
discovery. The blind docking task is also crucial for discovering mechanisms of function of a small
molecule and these insights can lead to generally better treatment developments. While these are
large possible positive impacts on society, there is also a big potential for negative impact: potentially
practitioners might blindly trust the predictions of DIFFDOCK and make incorrect or not careful
enough decision based on them. We hope the confidence estimates of our method are able to mitigate
this but still caution users against blindly trusting deep learning predictions, including ours.
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A Proofs

A.1 Proof of Proposition 1

Proposition 1. Let x(t) := Ator(tθ,x) for some θ and where tθ = (tθ1, . . . tθm). Then the linear
and angular momentum are zero: d

dt x̄|t=0 = 0 and
∑
i(xi − x̄)× d

dtxi|t=0 = 0 where x̄ = 1
n

∑
i x.

Proof. Let x(t) = R(t)(B(tθ,x) − x̄0) + x̄0 + p(t) where B(tθ, ·) = B1,tθ1 ◦ · · ·Bm,tθm and
R(t),p(t) are the rotation (around x̄0 := x̄(0)) and translation associated with the optimal alignment
between B(tθ,x) and x. By definition of RMSD, we have

||x(t)− x(0)|| = min
R,p
||R(t)(B(tθ,x(0))− x̄0) + x̄0 + p(t)− x(0)|| (1)

which, in the limit of t→ 0, becomes∣∣∣∣∣∣∣∣ ddtx(t)
∣∣∣∣∣∣∣∣2
t=0

= min
R,p

∣∣∣∣∣∣∣∣ ddt (R(t)(B(tθ,x(0))− x̄0) + p(t))

∣∣∣∣∣∣∣∣2
t=0

(2)

The derivative in the LHS of Equation 2 at t = 0 is

R′(t)(x− x̄) +B′(tθ,x(0)) + p′(t) (3)

and represents the instantaneous velocity of the points xi at t = 0. Denoting ri = xi − x̄0, our
objective is to minimize

∑
i ||r′i||

2. Then, if we describe R′(t)(x − x̄0) = R′(t)r by an angular
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velocity ω and abbreviate B′(tθ,x(0))i := bi and p′ = v, we have∑
i

∣∣∣∣r′i∣∣∣∣2 =
∑
i

(bi + ω × ri + v) · (bi + ω × ri + v)

=
∑
i

[
||bi||2 + 2bi · (ω × ri) + 2bi · v + (ω × ri) · (ω × ri) + 2(ω × ri) · v + ||v||2

]
=
∑
i

||bi||2 + 2ω ·
∑
i

(ri × bi) + 2

(∑
i

bi

)
· v + n ||v||2 + ωTI(r)ω

(4)
where we have used the fact that

∑
i ri = 0 and where I(r) = (

∑
i ri · ri) I −

∑
i rir

T
i is the 3× 3

inertia tensor. Then setting gradients with respect to v,ω gives

v = − 1

n

∑
i

bi and ω = −I(r)−1

(∑
i

ri × bi

)
(5)

Now with r′i = bi + ω × ri + v we evaluate the linear momentum

1

n

∑
i

r′i =
1

n

(∑
i

bi + ω ×
∑
i

ri + nv

)
= 0 (6)

which is zero by direct substitution of v. Similarly, we evaluate the angular momentum∑
i

ri × r′i =
∑
i

ri × bi +
∑
i

ri × (ω × ri) +
∑
i

ri × v

=
∑
i

ri × bi + I(r)ω = 0
(7)

which is zero by direct substitution of ω. Thus, the linear and angular momentum are zero at t = 0
for arbitrary x(0).

Note that since we did not use the particular form of B(tθ,x) in the above proof, we have shown
that RMSD alignment can be used to disentangle rotations and translations from the infinitesimal
action of any arbitrary function.

A.2 Proof of Proposition 2

Proposition 2. For a given seed conformation c, the map A(·, c) : P→Mc is a bijection.

Proof. Since we definedMc = {A(g, c) | g ∈ P}, A(·, c) is automatically surjective. We now show
that it is injective. Assume for the sake of contradiction that A(·, c) is not injective, so that there exist
elements of the product space g1, g2 ∈ P with g1 ̸= g2 but with A(g1, c) = A(g2, c) = c′. That is,

Atr(r1, Arot(R1, Ator(θ1, c))) = Atr(r2, Arot(R2, Ator(θ2, c))) (8)

which we abbreviate as c(1) = c(2). Since only Atr changes the center of mass
∑
i ci/n, we have∑

i c
(1)
i /n =

∑
i ci/n+r1 and

∑
i c

(2)
i /n =

∑
i ci/n+r2. However, since c(1) = c(2), this implies

r1 = r2. Next, consider the torsion angles τ1 = (τ
(1)
1 , . . . τ

(1)
m ) of c(1) corresponding to some choice

of dihedral angles at each rotatable bond. Because Atr and Arot are rigid-body motions, only Ator

changes the dihedral angles; in particular, by definition we have τ (1)i
∼= τi + θ

(1)
i mod 2π and

τ
(2)
i
∼= τi+θ

(2)
i mod 2π for all i = 1, . . .m. However, because τ (1)i = τ

(2)
i , this means θ(1)i ∼= θ

(2)
i

for all i and therefore θ1 = θ2 (as elements of SO(2)m). Now denote c⋆ = Ator(θ1, c) = Ator(θ2, c)
and apply Atr(−r1, ·) = Atr(−r2, ·) to both sides of Equation 8. We then have

Arot(R1, c
⋆) = Arot(R2, c

⋆) (9)
which further leads to

c⋆ − c̄⋆ = R−1
1 R2(c

⋆ − c̄⋆) (10)
In general, this does not imply that R1 = R2. However, R1 ̸= R2 is possible only if c⋆ is degenerate,
in the sense that all points are collinear along the shared axis of rotation of R1, R2. However, in
practice, conformers never consist of a collinear set of points, so we can safely assume R1 = R2.
We now have (r1, R1,θ1) = (r2, R2,θ2), or g1 = g2, contradicting our initial assumption. We thus
conclude that A(·, c) is injective, completing the proof.
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B Training and Inference

In this section we present the training and inference procedures of the diffusion generative model.
First, however, there are a few subtleties of the generative approach to molecular docking that are
worth mentioning. Unlike the standard generative modeling setting where the dataset consists of
many samples drawn from the data distribution, each training example (x⋆,y) of protein structure y
and ground-truth ligand pose x⋆ is the only sample from the corresponding conditional distribution
px⋆(· | y) defined overMx⋆ . Thus, the innermost training loop iterates over distinct conditional
distributions px⋆(· | y), along with a single sample from that distribution, rather than over samples
from a common data distribution pdata(x).

As discussed in Section 2, during inference, c is the ligand structure generated with a method such
as RDKit. However, during training we requireMc =Mx⋆ in order to define a bijection between
c ∈ Mx⋆ and P. If we take c ∈ Mx⋆ , there will be a distribution shift between the manifolds
Mc considered at training time and those considered at inference time. To circumvent this issue, at
training time we predict c with RDKit and replace x⋆ with argminx†∈Mc

RMSD(x⋆,x†) using the
conformer matching procedure described in [15].

The above paragraph may be rephrased more intuitively as follows: during inference, the generative
model docks a ligand structure generated by RDKit, keeping its non-torsional degrees of freedom
(e.g., local structures) fixed. At training time, however, if we train the score model with the local
structures of the ground truth pose, this will not correspond to the local structures seen at inference
time. Thus, at training time, we replace the ground truth pose by generating a ligand structure with
RDKit and aligning it to the ground truth pose while keeping the local structures fixed.

With these preliminaries, we now continue to the full procedures (Algorithms 1 and 2). The training
and inference procedures of a score-based diffusion generative model on a Riemannian manifold
consist of (1) sampling and regressing against the score of the diffusion kernel during training; and
(2) sampling a geodesic random walk with the score as a drift term during inference [3]. Because we
have developed the diffusion process on P but continue to provide the score model with elements in
Mc ⊂ R3n, the full training and inference procedures involve repeatedly interconverting between
the two spaces using the bijection given by the seed conformation c.

Algorithm 1: Training procedure (single epoch)
Input: Training pairs {(x⋆,y)}, RDKit predictions {c}
foreach c,x⋆,y do

Let x0 ← argminx†∈Mc
RMSD(x⋆,x†);

Compute (r0, R0,θ0)← A−1
c (x0);

Sample t ∼ Uni([0, 1]);
Sample ∆r,∆R,∆θ from diffusion kernels ptr

t (· | 0), prot
t (· | 0), ptor

t (· | 0);
Set rt ← r0 +∆r;
Set Rt ← (∆R)R0;
Set θt ← θ0 +∆θ mod 2π;
Compute xt ← A((rt, Rt,θt), c);
Predict scores α ∈ R3, β ← R3, γ ∈ Rm = s(xt, c,y, t) ;
Take optimization step on loss
L = ||α−∇ptr

t (∆r | 0)||2 + ||β −∇prot
t (∆R | 0)||2 + ||γ −∇ptor

t (∆θ | 0)||2

However, as noted in the main text, the dependence of these procedures on the exact choice of c is
potentially problematic, as it suggests that at inference time, the model distribution may be different
depending on the orientation and torsion angles of c. Simply removing the dependence of the score
model on c is not sufficient since the update steps themselves still occur on P and require a choice of c
to be mapped toMc. However, notice that the update steps—in both training and inference—consist
of (1) sampling the diffusion kernels at the origin; (2) applying these updates to the point on P; and
(3) transferring the point on P toMc via A(·, c). Might it instead be possible to apply the updates to
3D ligand poses x ∈Mc directly?

It turns out that the notion of applying these steps to ligand poses “directly” corresponds to the
formal notion of group action. The operationsAtr, Arot, Ator that we have already defined are formally
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Algorithm 2: Inference procedure
Input: RDKit prediction c, protein structure y (both centered at origin)
Output: Sampled ligand pose x0

Sample θN ∼ Uni(SO(2)m), RN ∼ Uni(SO(3)), rN ∼ N (0, σ2
tor(T ));

Let xN = A((rN , RN ,θN ), c);
for n← N to 1 do

Let t = n/N and ∆σ2
tr = σ2

tr(n/N)− σ2
tr((n− 1)/N) and similarly for ∆σ2

rot,∆σ
2
tor;

Predict scores α ∈ R3, β ∈ R3, γ ∈ Rm ← s(xn, c,y, t);
Sample ztr, zrot, ztor from N (0,∆σ2

tr),N (0,∆σ2
rot),N (0,∆σ2

tor) respectively;
Set rn−1 ← r0 +∆σ2

trα+ ztr;
Set Rn−1 ← R(∆σ2

rotβ + zrot)Rn);
Set θn−1 ← θn + (∆σ2

torγ + ztor) mod 2π;
Compute xn−1 ← A((rn−1, Rn−1,θn−1), c);

Return x0;

group actions if they satisfy A(·)(g1g2,x) = A(g1, A(g2,x)). While true for Atr, Arot, this is not
generally true for Ator if we take SO(2)m to be the direct product group; however, the approximation
is increasingly good as the magnitude of the torsion angle updates decreases. If we then define P to be
the direct product group of its constituent groups, A is a group action of P onMc, as the operations
of Atr, Arot, Ator commute and are (under the approximation) individually group actions.

The implication of A being a group action can be seen as follows. Let δ = gbg
−1
a be the update

which brings ga ∈ P to gb ∈ P via left multiplication, and let xa,xb be the corresponding ligand
poses A(ga, c), A(gb, c). Then

xb = A(gbg
−1
a ga, c) = A(δ,xa) (11)

which means that the updates δ can be applied directly to xa using the operation A. The training and
inference procedures then become Algorithm 3 and 4 below. The initial conformer c is no longer
used, except in the initial steps to define the manifold—to find the closest point to x⋆ in training, and
to sample xN from the prior overMc in inference.

Conceptually speaking, this procedure corresponds to “forgetting” the location of the origin element
on Mc, which is permissible because a change of the origin to some equivalent seed c′ ∈ Mc

merely translates—via right multiplication by A−1
c (c′)—the original and diffused data distributions

on P, but does not cause any changes onMc itself. The training and inference routines involve
updates—formally left multiplications—to group elements, but as left multiplication on the group
corresponds to group actions onMc, the updates can act onMc directly, without referencing the
origin c.

We find that the approximation ofA as a group action works quite well in practice and use Algorithms
3 and 4 for all training and experiments discussed in the paper. Of course, disentangling the torsion
updates from rotations in a way that makes Ator exactly a group action would justify the procedure
further, and we regard this as a possible direction for future work.

Algorithm 3: Approximate training procedure (single epoch)
Input: Training pairs {(x⋆,y)}, RDKit predictions {c}
foreach c,x⋆,y do

Let x0 ← argminx†∈Mc
RMSD(x⋆,x†);

Sample t ∼ Uni([0, 1]);
Sample ∆r,∆R,∆θ from diffusion kernels ptr

t (· | 0), prot
t (· | 0), ptor

t (· | 0);
Compute xt ← A((∆r,∆R,∆θ),x0);
Predict scores α ∈ R3, β ← R3, γ ∈ Rm = s(xt,y, t) ;
Take optimization step on loss
L = ||α−∇ptr

t (∆r | 0)||2 + ||β −∇prot
t (∆R | 0)||2 + ||γ −∇ptor

t (∆θ | 0)||2
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Algorithm 4: Approximate inference procedure
Input: RDKit prediction c, protein structure y (both centered at origin)
Output: Sampled ligand pose x0

Sample θN ∼ Uni(SO(2)m), RN ∼ Uni(SO(3)), rN ∼ N (0, σ2
tor(T ));

Let xN = A((rN , RN ,θN ), c);
for n← N to 1 do

Let t = n/N and ∆σ2
tr = σ2

tr(n/N)− σ2
tr((n− 1)/N) and similarly for ∆σ2

rot,∆σ
2
tor;

Predict scores α ∈ R3, β ∈ R3, γ ∈ Rm ← s(xn,y, t);
Sample ztr, zrot, ztor from N (0,∆σ2

tr),N (0,∆σ2
rot),N (0,∆σ2

tor) respectively;
Set ∆r← r0 +∆σ2

trα+ ztr;
Set ∆R← R(∆σ2

rotβ + zrot);
Set ∆θ ← ∆σ2

torγ + ztor;
Compute xn−1 ← A((∆r,∆R,∆θ),xn);

Return x0;

C Architecture Details

We use convolutional networks based on tensor products of irreducible representations (irreps)
of SO(3) [16] as architecture for both the score and confidence models. In particular, these are
implemented using the e3nn library [17]. Below, ⊗w refers to the spherical tensor product of irreps
with path weights w, and ⊕ refers to normal vector addition (with possibly padded inputs). Features
have multiple channels for each irrep. Both the architectures can be decomposed into three main
parts: embedding layer, interaction layers, and output layer. We outline each of them below.

C.1 Embedding layer

Geometric heterogeneous graph. Structures are represented as heterogeneous geometric graphs with
nodes representing ligand (heavy) atoms, receptor residues (located in the position of the α-carbon
atom), and receptor (heavy) atoms (only for the confidence model). Because of the high number
of nodes involved, it is necessary for the graph to be sparsely connected for runtime and memory
constraints. Moreover, sparsity can act as a useful inductive bias for the model, however, it is critical
for the model to find the right pose that nodes that might have a strong interaction in the final pose to
be connected during the diffusion process. Therefore, to build the radius graph, we connect nodes
using cutoffs that are dependent on the types of nodes they are connecting:

1. Ligand atoms-ligand atoms, receptor atoms-receptor atoms, and ligand atoms-receptor atoms
interactions all use a cutoff of 5Å, standard practice for atomic interactions. For the ligand
atoms-ligand atoms interactions we also preserve the covalent bonds as separate edges with
some initial embedding representing the bond type (single, double, triple and aromatic). For
receptor atoms-receptor atoms interactions, we limit at 8 the maximum number of neighbors
of each atom. Note that the ligand atoms-receptor atoms only appear in the confidence
model where the final structure is already set.

2. Receptor residues-receptor residues use a cutoff of 15 Å with 24 as the maximum number
of neighbors for each residue.

3. Receptor residues-ligand atoms use a cutoff of 20 + 3 ∗ σtr Å where σtr represents the
current standard deviation of the diffusion translational noise present in each dimension
(zero for the confidence model). Intuitively this guarantees that with high probability, any
of the ligands and receptors that will be interacting in the final pose the diffusion model
converges to are connected in the message passing at every step.

4. Finally, receptor residues are connected to the receptor atoms that form the corresponding
amino-acid.

Node and edge featurization. For the receptor residues, we use the residue type as a feature as well
as a language model embedding obtained from ESM2 [18]. The ligand atoms have the following
features: atomic number; chirality; degree; formal charge; implicit valence; the number of connected
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hydrogens; the number of radical electrons; hybridization type; whether or not it is in an aromatic
ring; in how many rings it is; and finally, 6 features for whether or not it is in a ring of size 3, 4, 5, 6,
7, or 8. These are concatenated with sinusoidal embeddings of the diffusion time [19] and, in the case
of edges, radial basis embeddings of edge length [20]. These scalar features of each node and edge
are then transformed with learnable two-layer MLPs (different for each node and edge type) into a
set of scalar features that are used as initial representations by the interaction layers.

Notation Let (V, E) represent the heterogeneous graph, with V = (Vℓ,Vr) respectively ligand atoms
and receptor residues (receptor atoms Va, present in the confidence model, are for simplicity not
included here), and similarly E = (Eℓℓ, Eℓr, Erℓ, Err). Let ha be the node embeddings (initially only
scalar channels) of node a, eab the edge embeddings of (a, b), and µ(rab) radial basis embeddings of
the edge length. Let σ2

tr, σ
2
rot, and σ2

tor represent the variance of the diffusion kernel in each of the
three components: translational, rotational and torsional.

C.2 Interaction layers

At each layer, for every pair of nodes in the graph, we construct messages using tensor products of
the current node features with the spherical harmonic representations of the edge vector. The weights
of this tensor product are computed based on the edge embeddings and the scalar features—denoted
h0
a—of the outgoing and incoming nodes. The messages are then aggregated at each node and used

to update the current node features. For every node a of type ta:

ha ← ha ⊕
t∈{ℓ,r}

BN(ta,t)

(
1

|N (t)
a |

∑
b∈N (t)

a

Y (r̂ab) ⊗ψab
hb

)

with ψab = Ψ(ta,t)(eab,h
0
a,h

0
b)

(12)

Here, t indicates an arbitrary node type, N (t)
a = {b | (a, b) ∈ Etat} the neighbors of a of type t, Y

are the spherical harmonics up to ℓ = 2, and BN the (equivariant) batch normalisation. The orders
of the output are restricted to a maximum of ℓ = 1. All learnable weights are contained in Ψ, a
dictionary of MLPs, which uses different sets of weights for different edge types (as an ordered pair
so four types for the score model and nine for the confidence) and different rotational orders.

C.3 Output layer

The ligand atom representations after the final interaction layer are used in the output layer to
produce the required outputs. This is where the score and confidence architecture differ significantly.
On one hand, the score model’s output is in the tangent space TrT3 ⊕ TRSO(3) ⊕ TθSO(2)m.
This corresponds to having two SE(3)-equivariant output vectors representing the translational and
rotational score predictions and m SE(3)-invariant output scalars representing the torsional score.
For each of these, we design final tensor-product convolutions inspired by classical mechanics. On the
other hand, the confidence model outputs a single SE(3)-invariant scalar representing the confidence
score. Below we detail how each of these outputs is generated.

Translational and rotational scores. The translational and rotational score intuitively represent,
respectively, the linear acceleration of the center of mass of the ligand and the angular acceleration of
the rest of the molecule around the center. Considering the ligand as a rigid object and given a set of
forces and masses at each ligand, a tensor product convolution between the atoms and the center of
mass would be capable of computing the desired quantities. Therefore, for each of the two outputs,
we perform a convolution of each of the ligand atoms with the (unweighted) center of mass c.

v← 1

|Vℓ|
∑
a∈Vℓ

Y (r̂ca) ⊗ψca
ha

with ψca = Ψ(µ(rca),h
0
a)

(13)

We restrict the output of v to a single odd and a single even vectors (for each of the two scores).
Since we are using coarse-grained representations of the protein, the score will neither be even nor
odd; therefore, we sum the even and odd vector representations of v. Finally, the magnitude (but not
direction) of these vectors is adjusted with an MLP taking as input the current magnitude and the
sinusoidal embeddings of the diffusion time. Finally, we (revert the normalization) by multiplying
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the outputs by 1/σtr for the translational score and by the expected magnitude of a score in SO(3)
with diffusion parameter σrot (precomputed numerically).

Torsional score. To predict the m SE(3)-invariant scalar describing the torsional score, we use a
pseudotorque layer similar to that of [15]. This predicts a scalar score δτ for each rotatable bond
from the per-node outputs of the atomic convolution layers. For rotatable bond g = (g0, g1) and
b ∈ Vℓ, let rgb and r̂gb be the magnitude and direction of the vector connecting the center of bond g
and b. We construct a convolutional filter Tg for each bond g from the tensor product of the spherical
harmonics with a ℓ = 2 representation of the bond axis r̂g:2

Tg(r̂) := Y 2(r̂g)⊗ Y (r̂) (14)

⊗ is the full (i.e., unweighted) tensor product as described in [21], and the second term contains the
spherical harmonics up to ℓ = 2 (as usual). This filter (which contains orders up to ℓ = 3) is then
used to convolve with the representations of every neighbor on a radius graph:

Eτ = {(g, b) | g a rotatable bond, b ∈ Vℓ}
egb = Υ(τ)(µ(rgb)) ∀(g, b) ∈ Eτ

hg =
1

|Ng|
∑
b∈Ng

Tg(r̂gb)⊗γgb hb

with γgb = Γ(egb,h
0
b ,h

0
g0 + h0

g1)

(15)

Here, Ng = {b | (g, b) ∈ Eτ} and Υ(τ) and Γ are MLPs with learnable parameters. Since unlike
[15], we use coarse-grained representations the parity also here is neither even nor odd, the irreps
in the output are restricted to arrays both even h′

g and odd h′′
g scalars. Finally, we produce a single

scalar prediction for each bond:
δτg = Π(h′

g + h′′
g ) (16)

where Π is a two-layer MLP with tanh nonlinearity and no biases. This is also “denormalized" by
multiplying by the expected magnitude of a score in SO(2) with diffusion parameter σtor.

Confidence output. The single SE(3)-invariant scalar representing the confidence score output is
instead obtained by concatenating the even and odd final scalar representation of each ligand atom,
averaging these feature vectors among the different atoms, and finally applying a three layers MLP
(with batch normalization).

D Experimental Details

In general, all our code is available at https://anonymous.4open.science/r/DiffDock. This
includes running the baselines, runtime calculations, training and inference scripts for DIFFDOCK,
the PDB files of DIFFDOCK’s predictions for all 363 complexes of the test set, and visualization
videos of the reverse diffusion.

D.1 Experimental Setup

Data. We use the molecular complexes in PDBBind [7] that were extracted from the Protein Data
Bank (PDB) [8]. We employ the time-split of PDBBind proposed by [9] with 17k complexes from
2018 or earlier for training/validation and 363 test structures from 2019 with no ligand overlap with
the training complexes. This is motivated by the further adoption of the same split [11] and the
critical assessment of PDBBind splits by [10] who favor temporal splits over artificial splits based on
molecular scaffolds or protein sequence/structure similarity. For completeness, we also report the
results on protein sequence similarity splits in Appendix E.

Metrics. To evaluate the generated complexes, we compute the heavy-atom RMSD between the
predicted and the crystal ligand atoms when the protein structures are aligned. To account for
permutation symmetries in the ligand, we use the symmetry-corrected RMSD of sPyRMSD [22]. For
these RMSD values, we report the percentage of predictions that have an RMSD that is less than

2Since the parity of the ℓ = 2 spherical harmonic is even, this representation is indifferent to the choice of
bond direction.
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2Å. We choose 2Å since much prior work considers poses with an RMSD less that 2Å as “good"
or successful [23, 12, 13]. This is a chemically relevant metric, unlike the mean RMSD since for
further downstream analyses such as determining function changes, a prediction is only useful below
a certain RMSD error threshold. Less relevant metrics such as the mean RMSD are provided in
Appendix E.

D.2 Implementation details: hyperparameters, training, and runtime measurement

Training Details. We use Adam [24] as optimizer for the diffusion and the confidence model. The
diffusion model with which we run inference uses the exponential moving average of the weights
during training, and we update the moving average after every optimization step with a decay factor
of 0.999. The batch size is 16. We run inference with 20 denoising steps on 500 validation complexes
every 5 epochs and use the set of weights with the highest percentage of RMSDs less than 2Å as the
final diffusion model. We trained our final score model on four 48GB RTX A6000 GPUs for 850
epochs (around 18 days). The confidence model is trained on a single 48GB GPU. For inference,
only a single GPU is required. Scaling up the model size seems to improve performance and future
work could explore whether this trend continues further. For the confidence model uses the validation
cross-entropy loss is used for early stopping and training only takes 75 epochs. Code to reproduce
all results including running the baselines or to perform docking calculations for new complexes is
available at https://anonymous.4open.science/r/DiffDock.

Hyperparameters. For determining the hyperparameters of DIFFDOCK’s score model, we trained
smaller models (3.97 million parameters) that fit into 48GB of GPU RAM before scaling it up to the
final model (20.24 million parameters) that was trained on four 48GB GPUs. The smaller models
were only trained for 250 or 300 epochs, and we used the fraction of predictions with an RMSD below
2Å on the validation set to choose the hyperparameters. Table 2 shows the main hyperparameters
we tested and the final parameters of the large model we use to obtain our results. We only did little
tuning for the minimum and maximum noise levels of the three components of the diffusion. For the
translation, the maximum standard deviation is 19Å. We also experimented with second-order features
for the Tensorfield Network but did not find them to help. The complete set of hyperparameters next
to the main ones we describe here can be found in our repository.

The confidence model has 4.77 million parameters and the parameters we tried are in Table 3. We
generate 28 different training poses for the confidence model (for which it predicts whether or not
they have an RMSD below 2Å) with a score model that has a maximum translation standard deviation
of 34Å. The score model used to generate the training samples for the confidence model is thus
different from the large score model we used during inference.

Table 2: The hyperparameter options we searched through for DIFFDOCK’s score model. This was
done with small models before scaling up to a large model. The parameters shown here that impact
model size (bottom half of the table) are those of the large model. The final parameters for the large
DIFFDOCK model are marked in bold.

PARAMETER SEARCH SPACE

USING ALL ATOMS FOR THE PROTEIN GRAPH YES, NO
USING LANGUAGE MODEL EMBEDDINGS YES, NO
USING LIGAND HYDROGENS YES, NO
USING EXPONENTIAL MOVING AVERAGE YES, NO
MAXIMUM NUMBER OF NEIGHBORS IN PROTEIN GRAPH 10, 16, 24, 30
MAXIMUM NEIGHBOR DISTANCE IN PROTEIN GRAPH 5, 10, 15, 18, 20, 30
DISTANCE EMBEDDING METHOD SINUSOIDAL, GAUSSIAN
DROPOUT 0, 0.05, 0.1, 0.2
LEARNING RATES 0.01, 0.008, 0.003, 0.001, 0.0008, 0.0001
BATCH SIZE 8, 16, 24
NON LINEARITIES RELU

CONVOLUTION LAYERS 6
NUMBER OF SCALAR FEATURES 48
NUMBER OF VECTOR FEATURES 10
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Table 3: The hyperparameter options we searched through for DIFFDOCK’s confidence model. The
final parameters are marked in bold.

PARAMETER SEARCH SPACE

USING ALL ATOMS FOR THE PROTEIN GRAPH YES, NO
USING LANGUAGE MODEL EMBEDDINGS YES, NO
USING LIGAND HYDROGENS NO
USING EXPONENTIAL MOVING AVERAGE NO
MAXIMUM NUMBER OF NEIGHBORS IN PROTEIN GRAPH 10, 16, 24, 30
MAXIMUM NEIGHBOR DISTANCE IN PROTEIN GRAPH 5, 10, 15, 18, 20, 30
DISTANCE EMBEDDING METHOD SINUSOIDAL
DROPOUT 0, 0.05, 0.1, 0.2
LEARNING RATES 0.03, 0.003, 0.0003, 0.00008
BATCH SIZE 16
NON LINEARITIES RELU

CONVOLUTION LAYERS 5
NUMBER OF SCALAR FEATURES 24
NUMBER OF VECTOR FEATURES 6

Runtime. Similar to all the baselines, the preprocessing times are not included in the reported
runtimes. For DIFFDOCK the preprocessing time is negligible compared to the rest of the inference
time where multiple reverse diffusion steps are performed. Preprocessing mainly consists of a forward
pass of ESM2 to generate the protein language model embeddings, RDKit’s conformer generation,
and the conversion of the protein into a radius graph. We measured the inference time when running
on an RTX A100 40GB GPU when generating 10 samples. The runtimes we report for generating
40 samples and ranking them are extrapolations where we multiply the runtime for 10 samples by 4.
In practice, this only gives an upper bound on the runtime with 40 samples, and the actual runtime
should be faster.

D.3 Baselines: implementation, used scripts, and runtime details

Our scripts to run the baselines are available at https://anonymous.4open.science/r/
DiffDock. For obtaining the runtimes of the different methods, we always used 16 CPUs ex-
cept for GLIDE as explained below. The runtimes do not include any preprocessing time for any of
the methods. For instance, the time that it takes to run P2Rank is not included for TANKBind, and
P2Rank + SMINA/GNINA since this receptor preparation only needs to be run once when docking
many ligands to the same protein. In applications where different receptors are processed (such as
reverse screening), the experienced runtimes for TANKBind and P2Rank + SMINA/GNINA will thus
be higher.

We note that for all these baselines we have used the default hyperparameters unless specified
differently below. Modifying some of these hyperparameters (for example the scoring method’s
exhaustiveness) will change the runtime and performance tradeoffs (e.g., if the searching routine is
left running for longer then better poses are likely to be found), however, we leave these analyses to
future work.

SMINA [14] improves Autodock Vina with a new scoring-function and user friendliness. The default
parameters were used with the exception of setting –num_modes 10. To define the search box, we
use the automatic box creation option around the receptor with the default buffer of 4Å on all 6 sides.

GNINA [13] builds on SMINA by additionally using a learned 3D CNN for scoring. The default
parameters were used with the exception of setting –num_modes 10. To define the search box, we
use the automatic box creation option around the receptor with the default buffer of 4Å on all 6 sides.

QuickVina-W [12] extends the speed-optimized QuickVina 2 [23] for blind docking. We reuse the
numbers from [9] which had used the default parameters except for increasing the exhaustiveness to
64.

GLIDE [2] is a strong heavily used commercial docking tool. These methods all use biophysics based
scoring-functions. We reuse the numbers from [9] since we do not have a license. As explained by
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[9], the very high runtime of GLIDE with 1405 seconds per complex is partially explained by the fact
that GLIDE only uses a single thread when processing a complex. This fact and the parallelization
options of GLIDE are explained here https://www.schrodinger.com/kb/1165. With GLIDE,
it is possible to start data-parallel processes that compute the docking results for a different complex
in parallel. However, each process also requires a separate software license.

EquiBind [9], we reuse the numbers reported in their paper and generate the predictions that we
visualize with their code at https://github.com/HannesStark/EquiBind.

TANKBind [11], we use the code associated with the paper at https://github.com/luwei0917/
TankBind. The runtimes do not include the runtime of P2Rank or any preprocessing steps. In
Table 1 we report two runtimes (0.72/2.5 sec). The first is the runtime when making only the top-1
prediction and the second is for producing the top-5 predictions. Producing only the top-1 predictions
is faster since TANKBind produces distance predictions that need to be converted to coordinates with
a gradient descent algorithm and this step only needs to be run once for the top-1 prediction, while
it needs to be run 5 times for producing 5 outputs. To obtain our runtimes we run the forward pass
of TANKBind on GPU (0.28 seconds) with the default batch size of 5 that is used in their GitHub
repository. To compute the time the distances-to-coordinates conversion step takes, we run the
file baseline_run_tankbind_parallel.sh in our repository, which parallelizes the computation
across 16 processes which we also run on an Intel Xeon Gold 6230 CPU. This way, we obtain 0.44
seconds runtime for the conversion step of the top-1 prediction (averaged over the 363 complexes of
the testset).

P2Rank [25], is a tool that predicts multiple binding pockets and ranks them. We use it for running
TANKBind and P2Rank + SMINA/GNINA. We download the program from https://github.
com/rdk/p2rank and run it with its default parameters.

EquiBind + SMINA/GNINA [9], the bounding box in which GNINA/SMINA searches for binding
poses is constructed around the prediction of EquiBind with the –autobox_ligand option of
GNINA/SMINA. EquiBind is thus used to find the binding pocket and SMINA/GNINA to find the
exact final binding pose. We use –autobox_add 10 to add an additional 10Å on all 6 sides of the
bounding box following [9].

P2Rank + SMINA/GNINA. The bounding box in which GNINA/SMINA searches for binding
poses is constructed around the pocket center that P2Rank predicts as the most likely binding pocket.
P2Rank is thus used to find the binding pocket and SMINA/GNINA to find the exact final binding
pose. The diameter of the search box is the diameter of a ligand conformer generated by RDKit with
an additional 10Å on all 6 sides of the bounding box.

E Additional Results

E.1 Physically plausible predictions

Table 4: Steric clashes. Percentage of test complexes for which the predictions of the different
methods exhibit steric clashes. Search-based methods never produced steric clashes.

Top-1 Top-5
Method % steric clashes % steric clashes

EQUIBIND 26 -
TANKBIND 6.6 3.6

DIFFDOCK (10) 2.8 0
DIFFDOCK (40) 2.2 2.2

Due to the averaging phenomenon of regression-based methods such as TANKBind and EquiBind,
they make predictions at the mean of the distribution. If aleatoric uncertainty is present, such as in
case of symmetric complexes, this leads to predicting the ligand to be at an un-physical state in the
middle of the possible binding pockets as visualized in Figure 9. The Figure also illustrates how
DIFFDOCK does not suffer from this issue and is able to accurately sample from the modes.
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Figure 3: Ligand self-intersections. TANKBind (blue), EquiBind (cyan), DIFFDOCK (red), and
crystal structure (green). Due to the averaging phenomenon that occurs when epistemic uncertainty
is present, the regression-based deep learning models tend to produce ligands with atoms that are
close together, leading to self-intersections. DIFFDOCK, as a generative model, does not suffer from
this averaging phenomenon, and we never found a self-intersection in any of the investigated results
of DIFFDOCK.

In the scenario when epistemic uncertainty about the correct ligand conformation is present, this
often results in “squashed-up" predictions of the regression-based methods as visualized in Figure 3.
If there is uncertainty about the correct conformer, the square error minimizing option is to put all
atoms close to the mean.

These averaging phenomena in the presence of either aleatoric or epistemic uncertainty cause the
regression-based methods to often generate steric clashes and self intersections. To investigate this
quantitatively, we determine the fraction of test complexes for which the methods exhibit steric
clashes. We define a ligand as exhibiting a steric clash if one of its heavy atoms is within 0.4Å of a
heavy receptor atom. This cutoff is used by protein quality assessment tools and in previous literature
[26]. Table 4 shows that DIFFDOCK, as a generative model, produces fewer steric clashes than
the regression-based baselines. We generally observe no unphysical predictions from DIFFDOCK
unlike the self intersections that, e.g., TANKBind produces (Figure 3) or its incorrect local structures
(Figure 4). This is also visible in the randomly chosen examples of Figure 8 and can be examined in
our repository, where we provide all predictions of DIFFDOCK for the test set.

E.2 Further Results and Metrics

In this section, we present further evaluation metrics on the results presented in Table 1. Figure 5-left
shows the proportion of RMSDs below an arbitrary threshold ϵ with DIFFDOCK exceeding previous
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Figure 4: Chemically plausible local structures. TANKBind (blue), EquiBind (cyan), and DIFF-
DOCK (red) structures for complex 6g2f. EquiBind (without their correction step) produces very
unrealistic local structures and TANKBind, e.g., produces non-planar aromatic rings. DIFFDOCK’s
local structures are the realistic local structures of RDKit.

methods for almost every possible ϵ.3 Figure 5-right plots how the model’s performance changes
with the number of generative samples.
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Figure 5: Left: cumulative density histogram of the methods’ RMSD. Right: DIFFDOCK’s perfor-
mance as a function of the number of samples from the generative model. “Perfect selection" refers
to choosing the sample with the lowest RMSD.

For both top-1 (Table 5) and top-5 (Table 6) we report: 25th, 50th and 75th percentiles, the proportion
below 2Å and below 5Å of both ligand RMSD and centroid distance. Moreover, while [10] advocated
against artificial protein set splits and for time-based splits, for completeness, in Table 7 and Figure 6,
we report the performances of the different methods when evaluated exclusively on the portion of the
test set where the UniProt IDs of the proteins are not contained in the data that is seen by DIFFDOCK
in its training and validation.

E.3 Ablation studies

Below we report the performance of our method over different hyperparameter settings. In particular,
we highlight the different ways in which it is possible to control the tradeoff between runtime and
accuracy in our method. These mainly are: (1) model size, (2) diffusion time, and (3) diffusion
samples.

Model size. The final DIFFDOCK score model has 20.24 million parameters from its 6 convolution
layers with 48 scalar and 10 vector features. In Table 8 we show the results for a smaller score model
with 5 convolutions, 24 scalar, and 6 vector features resulting in 3.97 million parameters that can be
trained on a single 48GB GPU. The confidence model used is the same for both score models. We
find that scaling up the model size helped improve performance which we did as far as possible using
four 48GB GPUs for training. Scaling the model size further is a promising avenue for future work.

Diffusion steps. Another hyperparameter determining the runtime of the method during inference
is the number of steps we take during the reverse diffusion. Since these are applied sequentially
DIFFDOCK’s runtime scales approximately linearly with the number of diffusion steps. In the rest of

3With the exception of very small ϵ <1Å where GLIDE performs better.
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Table 5: Top-1 PDBBind docking. The top half contains methods that directly find the pose;
the bottom half those that use a pocket prediction method. The last two lines show our method’s
performance where, in parenthesis, we specify the number of poses sampled from the generative
model.

Ligand RMSD Centroid Distance

Percentiles ↓ % below
threshold ↑ Percentiles ↓ % below

thresh. ↑
Methods 25th 50th 75th 5 Å 2 Å 25th 50th 75th 5 Å 2 Å

QVINA-W 2.5 7.7 23.7 40.2 20.9 0.9 3.7 22.9 54.6 41.0
GNINA 2.4 7.7 17.9 40.8 22.9 0.8 3.7 23.1 53.6 40.2
SMINA 3.1 7.1 17.9 38.0 18.7 1.0 2.6 16.1 59.8 41.6
GLIDE (c.) 2.6 9.3 28.1 33.6 21.8 0.8 5.6 26.9 48.7 36.1
EQUIBIND 3.8 6.2 10.3 39.1 5.5 1.3 2.6 7.4 67.5 40.0

TANKBIND 2.5 4.0 8.5 59.0 20.4 0.9 1.8 4.4 77.1 55.1
P2RANK+SMINA 2.9 6.9 16.0 43.0 20.4 0.8 2.6 14.8 60.1 44.1
P2RANK+GNINA 1.7 5.5 15.9 47.8 28.8 0.6 2.2 14.6 60.9 48.3
EQUIBIND+SMINA 2.4 6.5 11.2 43.6 23.2 0.7 2.1 7.3 69.3 49.2
EQUIBIND+GNINA 1.8 4.9 13 50.3 28.8 0.6 1.9 9.9 66.5 50.8

DIFFDOCK (10) 1.5 3.6 7.3 61.3 34.5 0.5 1.2 3.2 80.9 63.7
DIFFDOCK (40) 1.4 3.5 7.4 63.3 37.5 0.5 1.2 3.0 80.6 64.5

Table 6: Top-5 PDBBind docking. The top half contains methods that directly find the pose;
the bottom half those that use a pocket prediction method. The last two lines show our method’s
performance where, in parenthesis, we specify the number of poses sampled from the generative
model.

Ligand RMSD Centroid Distance

Percentiles ↓ % below
threshold ↑ Percentiles ↓ % below

thresh. ↑
Methods 25th 50th 75th 5 Å 2 Å 25th 50th 75th 5 Å 2 Å

GNINA 1.6 4.5 11.8 52.8 29.3 0.6 2.0 8.2 66.8 49.7
SMINA 1.7 4.6 9.7 53.1 29.3 0.6 1.85 6.2 72.9 50.8

TANKBIND 2.1 3.4 6.1 67.5 24.5 0.8 1.4 2.9 86.8 62.0
P2RANK+SMINA 1.5 4.4 14.1 54.8 33.2 0.6 1.8 12.3 66.2 53.4
P2RANK+GNINA 1.4 3.4 12.5 60.3 38.3 0.5 1.4 9.2 69.3 57.3
EQUIBIND+SMINA 1.3 3.4 8.1 60.6 38.6 0.5 1.3 5.1 74.9 58.9
EQUIBIND+GNINA 1.4 3.1 9.1 61.7 39.1 0.5 1.1 5.3 73.7 60.1

DIFFDOCK (10) 1.3 2.8 5.2 74.0 40.1 0.5 1.0 2.2 86.5 72.1
DIFFDOCK (40) 1.2 2.5 4.7 77.1 43.3 0.4 0.9 2.1 87.0 74.2

the paper, we always use 20 steps, but in Figure 7 we show how the performance of the model varies
with the number of steps. We note that the model reaches nearly the full performance even with just
10 steps, suggesting that the model can be sped up 2x with a small drop in accuracy.

Diffusion samples. Given a score-based model and a number of steps for the diffusion model, it
remains to be determined how many independent samples N to query from the diffusion model and
then feed to the confidence model. As expected the more samples the confidence model receives
the more likely it is that it will find a pose that it is confident about and, therefore, the higher the
performance. The runtime of DIFFDOCK on GPU scales sublinearly until the different samples fit in
parallel in the model (depends on the protein size and the GPU memory) and approximately linearly
for larger sample sizes (however it can be easily parallelized across different GPUs). In Figure 5
we show how the success rate for the top-1, top-5, and top-10 prediction change as a function of
N . For example, for the top-1 prediction, the proportion of the prediction with RMSD below 2Å
varies between 22% of a random sample of the diffusion model (N = 1) to 38% when the confidence
model is allowed to choose between 40 samples.

19



0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7 DiffDock

GLIDE

GNINA

SMINA

QVinaW

TANKBind

EquiBind

RMSD (Å)

F
r
a
c
t
io

n
 w

it
h
 l
o
w

e
r
 R

M
S
D

Figure 6: PDBBind docking on unseen receptors. Shown is the cumulative density histogram of
the methods’ RMSD.

Table 7: PDBBind docking on unseen receptors. Percentage of predictions for which the RMSD to
the crystal structure is below 2Å and the median RMSD. “*" indicates the method run exclusively on
CPU, “-" means not applicable; some cells are empty due to infrastructure constraints.

Top-1 RMSD Top-5 RMSD Average
Method %<2 Med. %<2 Med. Runtime (s)

QVINAW 15.3 10.3 49*
GNINA 14.0 13.6 23.0 7.0 127
SMINA 14.0 8.5 21.7 6.7 126*
GLIDE 19.6 18.0 1405*
EQUIBIND 0.7 9.1 - - 0.04
TANKBIND 6.3 5.0 11.1 4.4 0.7/2.5

DIFFDOCK (10) 16.4±1.2 6.3±0.3 20.8±1.0 4.3±0.1 10
DIFFDOCK (40) 19.2±1.8 6.3±0.4 25.2±0.7 3.8±0.1 40

E.4 Affinity prediction

To validate the quality of the predicted poses, we also do some experiments in predicting the binding
affinity labels already present in PDBBind. In this section we report some preliminary results on this
task that show that a simple approach can already achieve results competitive with the state-of-the-art.
We leave a more thorough and sophisticated analysis on how to best use the DIFFDOCK framework
for binding affinity to future work.

Affinity prediction framework. We train the binding affinity predictor by generating a fixed
number of poses with the diffusion model and then feeding them to an affinity prediction model with

Table 8: Model size comparison. All methods receive a small molecule and are tasked to find its
binding location, orientation, and conformation. Shown is the percentage of predictions for which the
RMSD to the crystal structure is below 2Å and the median RMSD.

Top-1 RMSD (Å) Top-5 RMSD (Å) Average
Method %<2 Med. %<2 Med. Runtime (s)

DIFFDOCK-SMALL (10) 26.2 3.9 34.2 3.0 7
DIFFDOCK-SMALL (40) 32.0 3.9 40.8 2.7 28

DIFFDOCK (10) 34.5±0.3 3.61±0.05 40.1±1.1 2.79±0.09 10
DIFFDOCK (40) 37.5±0.5 3.46±0.04 43.3±0.5 2.53±0.05 40
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Figure 7: Ablation study on the number of reverse diffusion steps.

architecture almost analogous to the confidence model. This affinity prediction model takes in the
poses as a single heterogeneous graph with a single receptor but multiple sets of ligand nodes, which
have edges to the same receptor but not among themselves. After the final interaction layer, the scalar
representations of nodes in each ligand are aggregated with a mean pooling and passed through a set
of dense layers (as it is done for the confidence prediction). Then, the representations of the different
ligands are aggregated using multiple permutation invariant aggregators (mean, maximum, minimum,
and standard deviation) as in [27], and transformed with another set of dense layers producing a
single output, the predicted affinity.

Dataset, baselines, and training. To train we use PDBBind with the same splits used to train
the diffusion and confidence models. This provides for each of the complexes an affinity measure
that consists of inhibiting concentration (IC50), inhibition constant (Ki), or dissociation constant
(Kd) and its conversion to the − logKd/Ki metric. As baselines, we use a series of state-of-the-art
sequence-based and structure-based methods: TransformerCPI [28], MONN [29], IGN [30], PIGNet
[31], HOLOPTOT [32], STAMPDPI [33] and TANKBind [11]. We take the baselines’ performances
from [11].

Table 9: Binding affinity prediction. Prediction of − logKd/Ki on PDBBind. The baseline
numbers are from [11]. No hyperparameter tuning was performed for DIFFDOCK’s performance.

Methods RMSE ↓ Pearson ↑ Spearman ↑ MAE ↓
TRANSCPI 1.741 0.576 0.540 1.404
MONN 1.438 0.624 0.589 1.143
PIGNET 2.640 0.511 0.489 2.110
IGN 1.433 0.698 0.641 1.169
HOLOPROT 1.546 0.602 0.571 1.208
STAMPDPI 1.658 0.545 0.411 1.325
TANKBIND 1.346 0.726 0.703 1.070

DIFFDOCK 1.347 0.692 0.718 1.052

Results. The results presented in Table 9 highlight how even preliminary results with a straightforward
way of using DIFFDOCK’s predictions for affinity prediction achieve a performance that is on par with
the state-of-the-art. We hope this can motivate future work on better integrating affinity prediction in
the method and scaling to larger amounts of data.

E.5 Visualizations
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Figure 8: Randomly picked examples. The predictions of TANKBind (blue), EquiBind (cyan),
GNINA (magenta), DIFFDOCK (red), and crystal structure (green). Shown are the predictions once
with the protein and without it below. The complexes were chosen with a random number generator
from the test set. TANKBind often produces self intersections (examples at the top-right; middle-
middle; middle-right; bottom-right). DIFFDOCK and GNINA sometimes almost perfectly predict
the bound structure (e.g., top-middle). The complexes in reading order are: 6p8y, 6mo8, 6pya, 6t6a,
6e30, 6hld, 6qzh, 6hhg, 6qln.
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Figure 9: Symmetric complexes and multiple modes. EquiBind (cyan), DIFFDOCK highest
confidence sample (red), all other DIFFDOCK samples (orange), and the crystal structure (green). We
see that, since it is a generative model, DIFFDOCK is able to produce multiple correct modes and
to sample around them. Meanwhile, as a regression-based model, EquiBind is only able to predict
a structure at the mean of the modes. The complexes are unseen during training. The PDB IDs in
reading order: 6agt, 6gdy, 6ckl, 6dz3.
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Figure 10: Reverse Diffusion. Reverse diffusion of a randomly picked complex from the test set.
Shown are DIFFDOCK highest confidence sample (red), all other DIFFDOCK samples (orange),
and the crystal structure (green). Shown are the 20 steps of the reverse diffusion process (in
reading order) of DIFFDOCK for the complex 6oxx. Videos of the reverse diffusion are available at
https://anonymous.4open.science/r/DiffDock/visualizations/README.md.
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