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Abstract

Automated planetary transit detection has become vital to prioritize candidates
for expert analysis given the scale of modern telescopic surveys. While current
methods for short-period exoplanet detection work effectively due to periodicity in
the light curves, there lacks a robust approach for detecting single-transit events.
However, volunteer-labelled transits recently collected by the Planet Hunters TESS
(PHT) project now provide an unprecedented opportunity to investigate a data-
driven approach to long-period exoplanet detection. In this work, we train a 1-D
convolutional neural network to classify planetary transits using PHT volunteer
scores as training data. We find using volunteer scores significantly improves
performance over synthetic data, and enables the recovery of known planets at a
precision and rate matching that of the volunteers. Importantly, the model also
recovers transits found by volunteers but missed by current automated methods.

1 Introduction

Astronomical datasets from recent survey missions such as TESS [1] are now large enough to make
inspection by experts implausible. Discovering planets by observing the effect of their passage on their
parent stars—the transit method—for example, requires automated analysis. However, incumbent
algorithms that flag potential exoplanets rely on detecting periodic signals in the brightness of the
star—its light curve (LC). This skews the observed distribution to short-period planets, resulting in
fewer longer-period planets than expected in our catalog. In response, citizen science projects have
proven successful in finding planets that have been missed by automated detection methods [2, 3]. In
Planet Hunters TESS2 (PHT), volunteers from the general public inspect LCs for planetary transits
by eye. The data flagged by the volunteers has enabled a number of novel astronomical discoveries,
notably of longer-period exoplanets [3, 4].

In this work, we investigate using volunteer transit confidence scores from PHT as soft labels to train a
1-D convolutional neural network (CNN) to detect single-transit events from TESS LCs. We find that
training with volunteer scores as the main training signal enables better recovery of known planets
compared to synthetic data, with a precision and recall similar to that of the volunteers. Moreover,
the model is able to detect planets missed by traditional automated algorithms and even some that are
missed by volunteers. The model could therefore serve as a basis for a human-in-the-loop machine
learning pipeline for longer-period exoplanet discovery.
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Figure 1: Known candidate recovery for the PlaNet model and volunteers on test sectors. a) Fractional
recovery rate when test samples are ranked in order of predicted confidence. b) Precision of the top k
ranked predictions.

2 Background and Related Work

We focus on the detection part of the exoplanet discovery pipeline, which involves identifying and
short-listing high-potential exoplanet candidates from a large observational dataset for further analysis.
We investigate detecting exoplanets using the transit method, where temporary decreases in brightness
of stars can be used to identify a transiting planet.

Light Curves The observed brightness of a star varies due to both astrophysical and instrumental
noise processes. These variations can include both periodic (e.g. stellar variability) and irregular
signals (e.g. flares) which can either be confused for transits, or can confound automatic searches.
Contamination from other sources, the inherent variability of the target stars and telescope systematics
can also cause anomalies and missing data. This means that classical signal processing struggles to
robustly identify transits across the wide distribution of observed LCs. Figure 3 in Appendix A shows
some examples of typical LCs.

Traditional Exoplanet Detection and Validation The most common approach to automated
detection is to search for periodic signals and use a box-fitting algorithm to find transit-like dips in
the phase-folded LC [5]. The flagged LCs are then validated using a combination of diagnostics,
human vetting, probabilistic and machine learning approaches [6, 7, 8, 9, 10, 11, 12, 13, 14].

Deep Learning for Exoplanet Detection Recent work has sought to go beyond validation and
instead use deep learning directly on the (non-phase-folded) LCs to discover new candidates missed
by detection algorithms. However, the comparatively small number of positive examples has limited
the applicability of deep learning for exoplanet discovery [15]. Prior work trains on simulated data to
overcome this bottleneck, but this has been shown to have limited applicability on real LCs due to
the complex noise processes involved [8, 16]. Olmschenk et al. [17] used a combination of real and
synthetic data to construct a pipeline from full-frame images rather than the LCs. Nonetheless, the
authors note that they still find a similar distribution of planets to those found by automated algorithms
because the training data is biased towards multi-transit events. Cui et al. [18] present a promising
approach of using 2-D object detection algorithms on images of the LC, but are again limited in
training data by transits found by automated algorithms. In our work, by leveraging volunteer scores,
we are able to recover planets outside of the distribution found by automated algorithms.

2



Table 1: Recovery of TOIs comparing volunteers to variations of PlaNet. The subscript denotes the
proportion of synthetic planets and EBs used (default, 0.1). The recall (R) and precision (P) for the
top k ranked predictions, and the receiver operating characteristic and precision-recall area under
curve (AUC, PR-AUC) metrics are given for each model.

Model TOIs

R@100 1,000 5,000 10,000 P@100 1,000 5,000 10,000 AUC PR-AUC

Volunteers 0.030 0.268 0.543 0.601 0.490 0.431 0.175 0.097 0.799 0.261
PlaNet 0.019 0.283 0.542 0.633 0.300 0.455 0.175 0.102 0.835 0.227
PlaNet0.0 0.023 0.241 0.525 0.594 0.370 0.388 0.169 0.096 0.810 0.197
PlaNet0.3 0.009 0.158 0.518 0.620 0.140 0.255 0.167 0.100 0.637 0.147
PlaNetall 0.009 0.113 0.396 0.517 0.140 0.182 0.127 0.083 0.756 0.091

3 Data

3.1 TESS Light Curves

The TESS mission observes around 20,000 stars from a new sector of the sky every month. We used
the two-minute cadence LCs from the SPOC pipeline [19]3. To provide more realistic evaluation, we
divided the train and test data by sector as the model will be used for prioritizing future observations
rather than post-hoc analysis. Sectors 10-35 were used for training and validation, and sectors 36-43
for evaluation. Appendix B.1 contains more details on the data.

Pre-processing The LCs were pre-processed in three steps. 1) Anomaly removal. We used the
PDCSAP fluxes, which are nominally corrected for instrument variations and flux contamination
from nearby stars. We also filtered using the QUALITY marker given in LC files to remove anomalies.
2) Binning. For computational reasons we binned the data to a 14-minute cadence. This is the same
binning factor for LCs shown to the volunteers. The duration of transits of interest are generally on
the order of hours to days, so the characteristic shape of the dip is still identifiable at this resolution.
Empirical tests confirmed that there was no significant performance difference in using LCs binned
to 6-minutes or 14-minutes. 3) Normalisation. We divided and subtracted by the median such that
the LC is centred at zero. Dividing by the median (rather than the standard deviation) is common
practice in LC analysis as this allows a comparison of the magnitude of brightness dips, which can
differentiate between false positives and planets. We truncated from the start and end (in random
proportions) such that all LCs have a binned length of 2,500, and imputed missing values with zeros.

Synthetic Data In this work we investigate the efficacy of using volunteer scores as a training signal
for single-transit detection. We compare model performance when trained with varying amounts of
additional synthetic data as a comparison. The majority of transit-like signals in LCs correspond
to false positives (> 95%) [20]. Thus to help differentiate these cases, we included a proportion of
synthetic data from the test ETE-6 dataset [21] corresponding to transits and eclipsing binaries (EBs,
the most common false positive) in equal proportions. As we focus on single-transits, we only take
one transit from each synthetic LC to inject into a random section of the base LC. We used the full
flux for EBs as asymmetric dips are often used to identify them.

3.2 Volunteer Scores and Planetary Candidate Labels

We used the aggregated confidence scores from PHT that take into account the volunteer skill level
[3] as soft targets to train the network. We also cross-referenced the star corresponding to each LC
with discrete classifications of planetary candidates from TESS for evaluation. The TESS automated
pipeline flags ∼ 7% of the observations as threshold crossing events (TCEs) which indicates the
presence of a periodic signal. TCEs are then analysed by the TESS team and ∼ 18% are promoted to
TESS Objects of Interest (TOIs) status as likely planetary candidates. Similarly, candidates that have
been identified through volunteer flagging and vetted by the PHT science team are called Community

3https://archive.stsci.edu/missions-and-data/tess
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Figure 2: Predictions on real and synthetic test data. a) Parity plot for PlaNet predictions on real data.
Null label predictions from volunteer scores are not plotted for clarity but included in the regression
computation (black line). b) Predictions on injected transits as a function of signal to noise ratio. A
95% confidence interval is shown for each binned value.

TOIs (cTOIs). Overall, ∼1% of all LCs have planetary transits, whereas ∼21% have a non-zero
volunteer confidence scores. Thus the soft labels provide a better training signal to the model.

4 Method

PlaNet Model A 1-D CNN we call PlaNet was trained using a cross-entropy loss for binary
classification of light curves with or without a planetary transit. The model is primarily based on the
work by Olmschenk et al. [17]. In comparison to Olmschenk et al. [17], we used a deeper network
(22 convolutional layers) and larger kernel sizes in the first two layers (7 and 5 respectively) without
down-sampling. We also used residual connections to mitigate the vanishing gradient effect that is
associated with deeper models [22]. These modifications resulted in significant performance gains
over the original model. Appendix B.2 contains further details on the model. Our code is publicly
available4.

Data Augmentations During training, we added transformations to help with generalisation, each
with a probability of 0.1. To simulate a noise process, we randomly chose another LC with volunteer
score of 0.0 to inject into the base LC. Three types of data shifts were also incorporated. 1) Two
randomly chosen non-overlapping sections (each 25% of the LC) were switched. 2) The LC was
reversed temporally. 3) A random section (10%) of the LC was deleted.

5 Results and Discussion

Using volunteer scores as training data enables effective and diverse planet recovery. Figure
1 shows the fractional recovery rate and precision of planetary candidates for the top ∼ 10% ranked
predictions of PlaNet and volunteers. We find that PlaNet’s performance on TOIs is similar to that
of volunteers. Moreover, we find that the model recovers around a third of the cTOIs in the top 2%
ranked results, indicating that the model also finds planets that the TOI pipeline misses. Evaluation
on synthetic data (Figure 2b) indicates that performance greatly increases for transits with a signal to
noise ratio greater than 6. This is similar to that observed for volunteers [3].

Synthetic data can be useful but is not enough. Table 1 shows TOI recovery performance of
PlaNet when trained with different proportions of synthetic data. We find that training with volunteer
scores significantly increases performance over training with only synthetic data. However the best
performing model is one that does leverage a small amount of synthetic data (10% synthetic transits,
10% synthetic EBs, 80% volunteer soft labels). We argue that the volunteer labels provides a strong

4https://github.com/s-a-malik/pht-ml
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training signal, but the additional hard labels provided by the synthetic data help identify transits and
rule out false positives with more confidence. This leads to improved TOI recovery.

Comparing PlaNet and volunteer predictions. In general, we find that the TOIs and cTOIs have
high model predictions (Figure 2a)5. In some cases however, there is disagreement between volunteer
and model predictions. A review of a selection of these disputed LCs by an expert author (NE)
suggested that several (∼ 30%) of those identified by PlaNet but missed by volunteers were worth
further investigation, suggesting that the network is providing suitable candidates for review and
observational follow-up. We also found that fewer multi-transit planets were recovered, likely as we
explicitly focus training on single-transit events. Appendix A contains further qualitative analysis.

6 Conclusion

In this work, we used volunteer scores from Planet Hunters TESS to train a 1-D CNN to detect
planetary transits from TESS light curves. The model was found to match the original volunteer’s
recovery rate. Moreover, as observed in Eisner et al. [3], we recover single-transit candidates that
are missed by traditional pipelines, and even some that are missed by volunteers. The model could
therefore serve as a basis for a human-in-the-loop pipeline for longer-period exoplanet discovery.
In future work, we hope to use the model predictions alongside volunteer scores on new sectors
to prioritize analysis. Incorporating calibrated uncertainty estimation would help identify costly
overconfident predictions. This will also enable an active learning pipeline to be developed which
can make better use of volunteer time [23, 24].

Broader Impact

Citizen science enables more accessible participation in the scientific process. We believe involving
the public in scientific endeavours is beneficial for the community, widens perspectives and accelerates
progress. We see our work as a step towards human-in-the-loop machine learning pipeline where
volunteer and expert time for tedious labelling and analysis tasks is reduced. However, we must
also note that systems trained on crowd-sourced data can amplify existing biases if they exist in the
data. If there are systematic issues with volunteer labelling these can propagate to the model and
potentially be detrimental to performance.
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A Qualitative Analysis

We can gain an insight into where PlaNet does well and where it fails by looking at example predictions
on the test sectors. Concretely, we investigated cases where there are the largest discrepancies between
model predictions and volunteer scores (i.e. the top left and bottom right corners of Figure 2a). Figure
3 shows examples of these cases.
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PlaNet Success Modes Figure 3a shows a case where volunteers rejected a promising candidate
(likely due to the low signal to noise ratio), but PlaNet successfully flagged it as a likely transit.
Figure 3b shows a false positive from the volunteers. Here the dip is due to a background event, but
may be mistaken for a transit to the untrained eye. This was correctly predicted to be an unlikely
transit by the model.

PlaNet Failure Modes The bottom row of Figure 3 shows examples where volunteers correctly
identify planetary candidates and false positives, whereas the model makes incorrect predictions
with high confidence. We find the model sometimes rejects candidates with multi-transit events. As
we have explicitly trained on single-transit synthetics, the model may mistake slight asymmetry in
multi-transit dips as an eclipsing binary (Figure 3c). We also find that false positives arise more often
when there is a lot of stellar variability, as the model may mistake the sharp intrinsic variation for a
transit (Figure 3d).

Figure 3: Example success and failure modes of volunteers and the PlaNet model. In particular,
we look at examples of both false positive and false negative prediction of known planets, where
PlaNet and the volunteers’ predictions are the most different. Each panel shows binned (white) and
un-binned (blue) TESS light curve data. a) An example of a PlaNet true positive and volunteer false
negative. Here PlaNet flagged a new potential candidate with a shallow dip that volunteers missed.
TIC ID: 371596256, Sector: 36. b) An example of a PlaNet true negative and volunteer false positive.
The dip observed is due to a background event. TIC ID: 422506318, Sector: 42. c) An example of a
PlaNet false negative and volunteer true positive. TIC ID: 460140752, Sector: 36. d) An example of
a PlaNet false positive and volunteer true negative. TIC ID: 295317859, Sector: 39.

B Implementation Details

B.1 Data

The composition of each of the training, validation, and test data splits is given in Table 2. Planets
and EBs with TIC IDs that are multiples of 4 were chosen for synthetic data generation in the training
set, and those with a remainder of 1 for the validation set. The rest were chosen for the test set.

When synthetic data was used, an equal proportion of synthetic transits to synthetic EBs was used
in all cases. In the synthetic data composition experiments (Section 5), the model that used only
synthetic data used 30% synthetic transits, 30% EBs, and 40% LCs which volunteers scored 0.0
which indicates they are unlike to contain a transit. On synthetic injection, we randomly selected a
transit or EB from the relevant data split and point-wise multiplied it to the unnormalized base LC.
We used base LCs that have a volunteer score of 0.0 such that they are unlikely to already contain a
transit, but these may contain EBs. We further ensured that at least 80% of the section of the base LC
where the transit is being injected into was not missing data. This is to prevent injecting a transit into
a missing data region where it would not be visible and thus be mislabelled. LC noise was injected in
a similar way using median-normalised injection curves which had a volunteer score of 0.0.

The signal to noise ratio (SNR) for synthetic data was calculated as the depth of the injected transit
divided by the Combined Differential Photometric Precision (CDPP) of the base light curve. CDPP
is the metric that defines the ease with which these weak terrestrial transit signatures can be detected.
This is given at a series of durations (0.5, 1, 2 days). The closest one to the duration of the transits was
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Figure 4: Simplified schematic of the proposed PlaNet architecture (inspired by Olmschenk et al.
[17]). a) PlaNet features a series of convolutional blocks (Conv-Blocks) with residual connections
[22], followed by two Dense-Blocks. b) A Conv-Block. c) A Dense-Block.

Table 2: Breakdown of the examples in each of the data splits used in this work. Strong volunteer
scores are those that have an aggregated confidence over 0.5. The number of synthetic transits and
eclipsing binaries used to generate the synthetic data is also given.

Data Split Sectors Total Light
Curves

Non-zero
Vol. Scores

Strong
Vol. Scores

Synthetic
Transits

Synthetic
EBs

Training 10–29 367,417 58,721 8,311 278 65
Validation 30–35 118,344 29,850 2,974 316 69
Test 36–43 137,657 44,891 4,662 616 145

used to calculate the SNR. Unlike in PHT and other work [3, 18], we did not place a minimum SNR
constraint on injected transits as we hope to be able to identify shallow transits. We did, however,
place a maximum SNR constraint of 15, and a maximum duration of 4 days as in PHT.

B.2 Models

Figure 4 shows a schematic of the proposed PlaNet architecture. PlaNet consists of 11 residual blocks,
each consisting of two convolutional blocks with a skip connection [22]. These are followed by 2
dense blocks and finally a fully-connected layer with sigmoid activation to output a transit confidence
score between 0 and 1. We do not use a fully convolutional model as some degree of temporal
awareness is required to identify EB false positives with multiple dips.

Conv-Blocks consists of a 1-D convolution, followed by a Leaky-ReLU non-linearity, dropout [25], a
max-pooling operation and finally batch normalisation [26]. A generic Dense-Block consists of a
linear layer, followed by a Leaky-ReLU, dropout and batch normalisation. Some operations in Conv
and Dense-Blocks are not used depending on the layer of the network (Appendix B). In Res-Blocks,
the second Conv-Block does not use a non-linearity. Instead the non-linearity is applied after the
residual is added to its output. When pooling is used to downsample, a 1-D convolutional with
kernel size of 1 and a stride equal to the pooling size is used to map the residual output to the same
dimensions as the second Conv-Block output.

Models were implemented in PyTorch [27]. The main PlaNet model hyperparameters are given in
Table 3. Architecture and optimization hyperparameters were chosen heuristically through minimising
validation loss. Training runs on the full dataset took 15-24 hours on a single NVIDIA GeForce GTX
2080 Ti GPU.
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Table 3: Hyperparameter configuration for PlaNet.

Hyperparameter Value

Optimization
Optimizer AdamW [28]
L2 Weight Regularisation 0.01
Learning Rate 0.001
Batch Size 256
Early Stopping Patience (epochs) 300
Dropout Rate 0.1
Max Epochs 1000

Architecture
Hidden Layer Non-linearities Leaky-ReLU (slope=0.01)
Layers [Res-Block (x11), Dense-Block (x2), Linear]
Kernel Size [7, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, N/A, N/A, N/A]
Dropout (True/False) [F, T, T, T, T, T, T, T, T, T, T, T, F, N/A]
Batch Normalisation (True/False) [F, T, T, T, T, T, T, T, T, T, T, T, F, N/A]
Number of Out Channels/Units [32, 32, 32, 64, 64, 128, 128, 128, 128, 128, 128, 1280, 256, 20]
Max Pooling Size [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, N/A, N/A, N/A]
Total Number of Parameters 1,054,889

Data
Synthetic Transit Proportion 0.1
Synthetic EB Proportion 0.1
Training Augmentation Probability 0.1
Bin Factor (Max LC Length) 7 (2500)
Permute Fraction in Training 0.25
Delete Fraction in Training 0.1
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