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Abstract

Generative Adversarial Networks (GANs) are powerful models able to synthesize
data samples closely resembling the distribution of real data, yet the diversity of
those generated samples is limited due to the so-called mode collapse phenomenon
observed in GANs. Conditional GANs are especially prone to mode collapse, as
they tend to ignore the input noise vector and focus on the conditional information.
Recent methods proposed to mitigate this limitation increase the diversity of
generated samples, yet they reduce the performance of the models when similarity
of samples is required. To address this shortcoming, we propose a novel method to
control the diversity of GAN-generated samples. By adding a simple, yet effective
regularization to the training loss function we encourage the generator to discover
new data modes for inputs related to diverse outputs while generating consistent
samples for the remaining ones. More precisely, we reward or penalize the model
for synthesising diverse images, matching the diversity of real and generated
samples for a given conditional input. We show the superiority of our method on
simulating data from the Zero Degree Calorimeter of the ALICE experiment in
LHC, CERN.

1 Introduction

Generative Adversarial Networks (GANs) [1] constitute a gold standard for synthesizing complex
data distributions and they are, therefore, widely used across various applications [2, 3, 4]. Among
others, they are employed in high energy physics experiments at the Large Hadron Collider (LHC)
at CERN, where they allow to speed up the process of simulating particle collisions [5, 6, 7, 8]. In
this context, GANs are used to generate samples of possible detectors’ responses resulting from a
collision of particles described with a series of physical parameters.

Although by using conditional GANs (cGANs) [9] we can obtain more context-dependent generations
that are closer to the values observed in real experiments, these models are considered more vulnerable
to the so-called mode collapse phenomenon [10], observed as a tendency to generate a limited number
of different outputs per each conditional prior. This, in turn, significantly reduces the effectiveness of
employing GANs for particle collision simulations, as alignment of generated samples with the real
data distribution is fundamental for drawing correct conclusions from the performed experiments.
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To address the above-mentioned limitations of cGANs, recent methods [11, 12, 13] attempt to increase
the diversity of generated samples by modifying the associated cost function. However, they do not
consider conditioning the diversity on the input conditioning values, assuming a uniform distribution
of diversity across all of them. This assumption is rarely observed in practical applications, for
instance in particle collision simulations at CERN diversity of generated samples highly depends on
a set of conditioning variables.

In this work, we identify this shortcoming of existing models and propose a simple, yet effective
method to balance the diversity of GAN-generated samples. In principle, we introduce a regularization
method that enforces GANs to follow the diversity observed in the original dataset for a given
conditional value. More exactly, we penalise or reward the model for generating diverse samples,
matching the diversity observed in the real and generated data for a given conditional input. Our
approach, dubbed DivBal-GAN, is readily applicable for conditional image synthesis models and
does not require any modification of the baseline GAN architecture.

We apply our method to a challenging task of simulating data from the Zero Degree Calorimeter of
the ALICE experiment in LHC, CERN outperforming competing approaches. The main contribution
of this paper is a novel method for a controlled increase of the diversity of GAN-generated results.

2 Related work

2.1 Generative simulations:

The need for simulating complex processes exists across many scientific domains. In recent years, so-
lutions based on generative machine learning models have been proposed as an alternative to existing
methods in cosmology [14] and genetics [15]. However, one of the most profound applications for
generative simulations is in the field of High Energy Physics, where machine learning models can be
used as a resource-efficient alternative to classic Monte Carlo-based [16] approaches.

Recent attempts [5, 8, 17] leverage solutions based on Generative Adversarial Networks [1] or
Variational Autoencoders [18]. Although those methods offer considerable speed-up of the simulation
process, they also suffer from the limitations of existing generative models. Controlling the diversity
of simulated results while maintaining the high fidelity of the simulation is one of the challenges of
using generative models for such applications.

2.2 Mode collapse and sample diversity in cGAN:

The authors of MS-GAN [12] address the mode collapse problem in cGANs by introducing a
regularization term that maximizes the dissimilarity between two images generated from two different
latent codes. DS-GAN [11] tries to tackle the problem with a similar approach. In DivCo [13] the
authors use contrastive learning to achieve diverse conditional image synthesis. They introduce a
latent-augmented contrastive loss which encourages images generated from distant latent codes to
be dissimilar and those generated from close latent codes to be similar. The similarity of images is
measured using their latent representations extracted from the discriminator network.

Our approach shares a similar method of calculating the diversity of images with [12] and [11].
However, contrary to those approaches we do not base our measure of diversity on pixels of generated
images. Instead we operate on image representation, similarly to [13].

In principle, all previously described approaches do not account for different levels of variance of
samples corresponding to different conditional inputs and instead maximize the diversity of the results
generated for all conditional inputs.

3 Method

Traditional conditional GANs are trained using adversarial loss Ladv(G,D). This loss function
encourages the generator to produce realistic data, but as observed by [13] it does not directly
promote the diversity of synthesised samples. To alleviate this problem Mao et al. [12] propose
adding a regularization term that penalizes low diversity of generated samples. More precisely, the
introduced method maximizes the ratio of the distance between two images generated from two
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different latent codes z1, z2 and the same conditioning value c with respect to the distance between
those latent codes.

Lms =

(
dI (G (c, z1) , G (c, z2))

dz (z1, z2)

)−1

(1)

Although this approach successfully forces the generator to produce dissimilar examples it does not
account for different levels of sample diversity for different conditioning input c. To address this issue
we propose a simple yet effective modification of the regularization term by introducing a balancing
term f(divreal(c), divgen(c)).

f(divreal(c), divgen(c)) = tanh
(
dI

(
X1

c , X
2
c

)
− dI

(
G (c, z1) , G (c, z2)

))
(2)

where X1
c , X2

c are 2 samples taken from the training dataset that correspond to the conditioning prior
c. To account for varying levels of sample diversity for each conditioning input c we multiply the
regularization term defined by Eq. 1 by the balancing term f(divreal(c), divgen(c)).

Ldiv = f
(
divreal(c), divgen(c)

)
∗
(
dI (G (c, z1) , G (c, z2))

dz (z1, z2)

)−1

(3)

Introducing the balancing term forces the generator to match the diversity observed in the training
data with respect to conditional values. When the dissimilarity of generated samples is lower than
the dissimilarity of real samples, the loss function encourages diverse generations. At the same time,
when the dissimilarity observed in the produced samples is higher than in the training data samples,
the model is penalized for generating diverse results. The overall objective of training DivBal-GAN
is given by Eq.4 where λdiv is a hyperparameter controlling the strength of the regularization.

L = Ladv(G,D) + λdivLdiv(G) (4)

Additionally, we propose to base the distance dI on the dissimilarity of latent representations of
images rather than the dissimilarity of pixels. We measure the distance between two generated images
by calculating the L1 metric between their latent representations obtained from the penultimate layer
of the discriminator during training. This change shifts the focus of the generator from the visual
dissimilarity of images to the difference in their underlying characteristics extracted by the encoder.

4 Experiments

We evaluate our method on simulating data from the Zero Degree Calorimeter from the ALICE
experiment. We compare our approach to conditional DC-GAN [19], MS-GAN [12] and DivCo [13].

4.1 Zero Degree Calorimeter

The task of simulating the response of the Zero Degree Calorimeter (ZDC) offers a challenging
benchmark for generative models. The dataset consists of 295867 samples obtained from the GEANT4
[16] simulation tool. Each response is created by a single particle described with 9 attributes (mass,
energy, charge, momenta, primary vertex).

During the simulation process, the particle is propagated through the detector for over 100 meters
while simulation tools must account for all of its interactions with the detector’s matter. The end
result of the simulation is the energy deposited in the calorimeter’s fibres, which are arranged in a
grid with 44 × 44 size. We treat the calorimeter’s response as a 1-channel image with 44 × 44 pixels,
where pixel values are the number of photons deposited in a given fibre. To create the dataset the
simulation was run multiple times for the same input particles. For that reason, multiple possible
outcomes correspond to the same particle properties. We refer to this dataset as HEP.

Although the process that governs the propagation of the particles is non-deterministic by nature, the
majority of particles create consistent ZDC responses. However, a subset of particles produces highly
diverse results and allows for multiple possible calorimeter responses. In the top row of Fig. 1 we
present sampled simulations for two particles corresponding to different conditional values.
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4.2 Results

The most common method for evaluating GANs utilizes Frechet Inception Distance (FID) [20].
However, for the HEP dataset, we propose a domain-specific evaluation scheme that better measures
the quality of the simulation. Following the calorimeter’s specification [21] we base our evaluation
procedure on 5 channels calculated from the pixels of generated images that reflect the physical
properties of simulated collision. To measure the quality of the simulation we compare the distribution
of channels for the original and generated data using Wasserstein distance [22].
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Figure 1: Examples of calorimeter response simulations with different methods. DC-GAN works well
for particles with consistent responses but fails to generate diverse outcomes when needed. Although
MS-GAN and DivCo successfully increase the diversity of generated samples those models do not
distinguish between particles that should produce diverse or consistent showers. Our method is able
to generate diverse results while producing consistent responses for appropriate particles.

As presented in Tab. 1, our approach outperforms other solutions on the HEP datasets. In Fig. 1
we demonstrate that our method is able to generate diverse results for a specific subset of particles
while keeping consistent responses for the remaining conditional inputs. The positive impact of
this approach on the distribution of the generated samples is further confirmed by Fig. 2 where we
compare channel distribution for DivBal-GAN and conditional DC-GAN. Our method increases
the fidelity of the simulation by smoothing the distribution of generated responses and covering the
whole range of possible outputs.
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Figure 2: Comparison of channel values distribu-
tion for a selected channel. Our method decreases
the differences between the distribution of original
and generated data and smooths the distribution of
the synthesised results.

Table 1: Results comparison for the HEP
datasets. DivBal-GAN achieves the lowest
Wasserstein distance between channels calcu-
lated from original and generated data.

Wassesrstein ↓

Real -
DC-GAN 7.6
MS-GAN 21.7
DivCo 14.3
DivBal-GAN 4.4
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The additional regularization term for training of DivBal-GAN does not influence the inference
speed of the model. In our initial experiments, we observe a speed-up of simulations of two orders
of magnitude when compared to the standard Monte-Carlo approach. With DivBal-GAN this
computation boost is observed without degradation in simulation quality. We leave a detailed analysis
of this performance gain and the influence of fast simulations on physical experiments for future
work.

5 Conclusions

In this work, we introduce a simple, yet effective modification of the loss function for conditional
generative adversarial networks. Our solution enforces increased sample diversity for a subset of
conditional data without affecting samples that are characterised by conditional values associated
with consistent responses.

We show that our solution outperforms other comparable approaches on the challenging practical
dataset of calorimeter response simulations in the ALICE experiment at CERN.
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Broader impact

As the Large Hadron Collider located at CERN has recently undergone extensive upgrades, the
amount of data recorded during the experiments has increased greatly. Therefore, there exists a need
for novel simulation methods for high energy physics (HEP). Moreover, advancements in generative
machine learning benefit other domains of science with the demand for generative simulations, such
as nuclear medicine or cosmology. Finally, by improving HEP experiments, we indirectly contribute
to disciplines that benefit from the results of HEP research. Outside the context of physical sciences,
increasing the diversity of generated samples helps to mitigate any potential discriminatory biases
learned by the model during training.
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increasing the diversity of gan-generated samples, 2022. URL https://arxiv.org/abs/2207.01561.

5

https://arxiv.org/abs/2006.03622
https://arxiv.org/abs/2103.10428
https://arxiv.org/abs/2207.01561


[8] Raghav Kansal, Javier Duarte, Hao Su, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou,
Jean-Roch Vlimant, and Dimitrios Gunopulos. Particle Cloud Generation with Message Passing Generative
Adversarial Networks. In Annual Conference on Neural Information Processing Systems (NeurIPS), 2021.

[9] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014. URL https://arxiv.
org/abs/1411.1784.

[10] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for training gans. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
8a3363abe792db2d8761d6403605aeb7-Paper.pdf.

[11] Dingdong Yang, Seunghoon Hong, Yunseok Jang, Tianchen Zhao, and Honglak Lee. Diversity-sensitive
conditional generative adversarial networks. In Proceedings of the International Conference on Learning
Representations, 2019.

[12] Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and Ming-Hsuan Yang. Mode seeking generative
adversarial networks for diverse image synthesis. In IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[13] Rui Liu, Yixiao Ge, Ching Lam Choi, Xiaogang Wang, and Hongsheng Li. Divco: Diverse conditional
image synthesis via contrastive generative adversarial network. In IEEE Conference on Computer Vision
and Pattern Recognition, 2021.

[14] Ruichen Rong, Shuang Jiang, Lin Xu, Guanghua Xiao, Yang Xie, Dajiang J Liu, Qiwei Li, and Xiaowei
Zhan. MB-GAN: Microbiome Simulation via Generative Adversarial Network. GigaScience, 10(2), 02
2021. ISSN 2047-217X. URL https://doi.org/10.1093/gigascience/giab005.

[15] Andres C. Rodríguez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara, Raphaël Sgier, Janis Fluri,
Thomas Hofmann, and Alexandre Réfrégier. Fast cosmic web simulations with generative adversarial
networks. Computational Astrophysics and Cosmology, 5(1), Nov 2018. ISSN 2197-7909. URL http:
//dx.doi.org/10.1186/s40668-018-0026-4.

[16] Sebastien Incerti, Ioanna Kyriakou, MA Bernal, MC Bordage, Z Francis, Susanna Guatelli, V Ivanchenko,
M Karamitros, N Lampe, Sang Bae Lee, et al. Geant4-dna example applications for track structure
simulations in liquid water: A report from the geant4-dna project. Medical physics, 45(8):e722–e739,
2018.

[17] Martin Erdmann, Jonas Glombitza, and Thorben Quast. Precise simulation of electromagnetic calorimeter
showers using a wasserstein generative adversarial network. Computing and Software for Big Science, 3
(1), Jan 2019. ISSN 2510-2044.

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

[19] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural
information processing systems, pages 6626–6637, 2017.

[21] G Dellacasa, X Zhu, M Wahn, FM Staley, V Danielian, TL Karavicheva, DP Mikhalev, N Carrer, M Gheata,
G Stefanek, et al. Alice technical design report of the zero degree calorimeter (zdc). Technical report,
ALICE, 1999.

[22] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-encoders.
arXiv preprint arXiv:1711.01558, 2017.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

6

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://doi.org/10.1093/gigascience/giab005
http://dx.doi.org/10.1186/s40668-018-0026-4
http://dx.doi.org/10.1186/s40668-018-0026-4


• Did you include the license to the code and datasets? [Yes]
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [No]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [No]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

7


	Introduction
	Related work
	Generative simulations:
	Mode collapse and sample diversity in cGAN:

	Method
	Experiments
	Zero Degree Calorimeter
	Results

	Conclusions

