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Abstract

The implicit hypothesis behind benchmarking on the gold standard QM9 dataset is
that, model improvement on small and concentrated molecules implies improve-
ment in generalization as better quantum chemical property (QCP) predictors. This
extrapolation ability for deep learning (DL) models is highly useful for various
real-world applications, yet the related investigation remains quite limited. The
goal of this paper is to promote the development of DL models that can extrap-
olate beyond the in-domain dataset, and can handle larger molecules than that
of the training data. To achieve this goal, a cross-dataset benchmark of training
models on QM9 dataset and testing on ALchemy datasets with Larger molecular
size (QMALL) is proposed. Experimental results using recent DL methods are
provided to investigate their out-of-distribution (OOD) behavior. Analysis of the
overall performance drop, model ranking inconsistency, aggregation method se-
lection, and error patterns created new insights into this OOD extrapolation issue,
highlighting its challenge for the research community to tackle.

1 Introduction
Recently, researchers leveraged DL to accelerate prediction of molecular properties that are crucial
in physics, chemistry, material science, and biology [1, 2]. Although state-of-the-art (SOTA) DL
architectures have achieved remarkable success in QCP prediction benchmarks such as QM9 [3, 4],
most of the publications on this topic developed and compared the models with the test mean absolute
error (MAE) as the only criterion [5–8]. However, in-domain better accuracy may not imply the
realistic adoption as a better QCP predictor [9], since the QCP predictor is often applied in unknown
chemical regions during molecule screening and optimization. The importance of OOD extrapolation
is obvious considering the large size of the molecular chemical space, which is estimated to be in the
order of 1060 [10]. If DL models are sensitive to slight distribution change of molecular structures or
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Figure 1: Property distribution comparison between QM9 train/test splits and Alchemy subsets [14]
with 9 to 12 heavy atoms after excluding charged molecules and molecules with S and Cl (See
Figure A4 in Appendix for entire plots of 12 properties).

properties, the meaning of QCP prediction benchmark will be severely limited to demonstrating the
expressiveness of DL models.

The gold standard QM9 benchmark dataset (elements of HCNOF with up to 9 heavy atoms) has several
limitations for OOD evaluation. First, following the ordinary ML settings, the property distributions
between train/valid/test splits are highly similar (see Figure 1). Therefore, the test performance of
the trained model might not be able to reveal the OOD performance. Second, the structures used
in train/valid/test split share the same bias due to the same flowchart for preparing the optimized
structures. However, in reality, it is unachievable for different researchers in different institutes to
follow the same flowchart (see Figure A5 and Table A3 in Appendix for details). Third, although
molecules in QM9 are relatively small compared with other well-known datasets (e.g., PubChem [11],
ChEMBL [12], ZINC [13]), size-related generalization remains less explored. Extrapolation from
small molecules to larger ones is very important from the perspective of calculation cost, where
DFT suffers from the O(N3) scaling bottleneck. Besides, empirically the molecular weight (another
indicator of molecular size) of medicinal chemistry compounds rises steadily in recent years [14].

Related Work: PC9 (elements of HCNOF with up to 9 heavy atoms) [15] are sampled from
PubChemQC [16] for cross-dataset extrapolation. However, PubChemQC only shares 3/12 properties
with QM9, while the systematic difference of interatomic distances is observed owing to DFT
optimization at different accuracy levels [15]. Besides, the comparison methods are kernel ridge
regression, elastic net, Gaussian process regression and SchNet, which are no longer SOTA models.

Changes in model trends between datasets have already been witnessed in fields such as computer
vision [17]. In the domain of DL and quantum chemistry, the correlation of model force MAEs
between datasets is studied [18], where model choices are found not consistent between datasets.
However, datasets consisting of different molecular properties are not focused on.

2 QMALL benchmark
To mimic the OOD working condition of the practical QCP predictor, a cross-dataset extrapolation
task is proposed2. In this QMALL benchmark, the training data is QM9 but the test data are different
splits of the Alchemy dataset according to the molecular size.

Originally, the shared 12/12 properties in QM9 and Alchemy are calculated by density functional
theory (DFT) at the same accuracy level of B3LYP/6-31G(2df,p). However, differences caused by
software (QM9 used Gaussian [19] but Alchemy used PySCF [20]) are still too big for studying
extrapolation of some properties [14], and thus modifications are performed as follows.

Step 1: The Alchemy dataset is stratified into Al9, Al10, Al11 and Al12 subsets based on the number
of heavy atoms, while charged molecules and molecules with S and Cl are excluded to conform with
QM9. Step 2: The 12 QCPs in Alchemy are recomputed by Gaussian [19] at the same accuracy
level with QM9 for compensating the DFT systematic difference. Step 3: For each property, a
linear transformation is applied to eliminate the systematic differences, where the weight and bias
are calculated based on 500 data points per dataset (See Tables A1 and A2 in Appendix for the
coefficients). Step 4: The DL models of interest are trained on QM9. Step 5: The models with the
best performance on the test split of QM9 are picked for inference on Al10, Al11 and Al12.

2The re-computed 12 properties of Al9-12 by Gaussian for QMALL benchmark is provided at https:
//github.com/YZHANG1996/QMALL.git
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Table 1: OOD extrapolation performance of models trained on QM9 and inferred on Alchemy10-12.
SchNet, MEGNet and DimeNet++ models are taken from the original repository, where MEGNet is
the MEGNet-simple model without auxiliary information. Boldfaced value indicates that the model
obtains the best performance with respect to one dataset and property.

Target µ α ϵHOMO ϵLUMO ∆ϵ ⟨R2⟩ ZPVE U0 U H G Cv
(Unit) (D) (a30) (meV ) (meV ) (meV ) (a20) (meV ) (meV ) (meV ) (meV ) (meV ) ( cal

molK )

SchNet

QM9 0.033 0.235 41 34 63 0.073 1.7 14 19 14 14 0.033
Al10 0.054 0.302 77.62 76.58 126.90 0.744 3.68 216.4 213.3 214.7 212.7 0.161
Al11 0.099 0.436 102.51 105.55 171.61 5.018 5.30 223.2 219.9 219.8 221.4 0.160
Al12 0.131 0.644 123.77 139.41 220.19 6.586 6.882 239.6 235.7 232.7 244.3 0.224

MEGNet

QM9 0.050 0.081 43 44 66 0.302 1.43 12 13 12 12 0.029
Al10 0.109 0.29 72.10 113.41 116.05 1.842 3.616 229.6 232.0 221.6 221.8 0.180
Al11 0.226 0.47 97.51 233.37 157.16 6.138 6.535 255.6 264.2 242.0 253.2 0.350
Al12 0.359 0.77 132.45 385.22 201.69 6.821 13.267 291.5 321.8 291.1 304.2 0.855

EGNN

QM9 0.029 0.071 29 25 47 0.107 1.55 12.7 10.8 12.7 12.56 0.031
Al10 0.061 7.395 57.07 70.44 94.53 64.342 5.61 6062.3 5764.5 6298.5 4363.3 0.169
Al11 0.108 14.713 79.25 105.32 139.42 139.20 14.24 13084.2 11811.9 13072.4 9111.7 0.169
Al12 0.136 21.710 99.98 168.57 214.36 213.28 29.06 20702.8 18274.7 20151.4 14086.8 0.231

DimeNet++

QM9 0.0297 0.0435 24.6 19.5 32.6 0.331 1.21 6.32 6.28 6.53 7.56 0.023
Al10 0.060 0.230 680.67 57.62 719.49 62.327 2.86 202.6 203.0 202.6 201.9 0.150
Al11 0.104 0.301 1366.34 85.57 1424.09 141.192 4.48 208.9 208.9 207.4 204.9 0.150
Al12 0.115 0.371 2070.23 112.44 2145.81 252.42 6.22 230.2 233.8 226.1 222.4 0.224

ET

QM9 0.010 0.044 23.2 17.3 38.4 0.034 1.64 6.15 6.14 6.04 7.21 0.022
Al10 0.036 0.242 211.13 51.21 238.19 0.788 3.85 205.6 205.2 205.7 206.7 0.254
Al11 0.066 0.325 592.94 71.23 633.03 4.767 7.38 212.9 211.5 212.4 212.4 0.569
Al12 0.065 0.416 1023.32 93.61 1083.53 4.734 15.93 232.3 232.3 234.1 232.3 0.948

It is worth mentioning that, the molecular size in the proposed benchmark is slightly larger than
QM9, which behaves as a challenging yet reasonable task for DL models compared with inference on
other molecular systems [21]. Thus, this benchmark might not be suitable if the goal of the user is to
evaluate the extrapolation ability on molecules that are much larger than those in the training dataset.

3 Results and analysis
In this section, we report the performance of QMALL benchmark for five well-known DL models:
SchNet [5], MEGNet [22], DimeNet++ [7], Equivariant graph neural networks (EGNN) [6], and
Equivariant transformer (ET) [23]. The experiment codes were run on NVIDIA Tesla V100 GPUs.
QM9 is under CC BY-NC SA 4.0 license and Alchemy is under MIT license.

3.1 Analysis of overall performance

Table 1 shows the test MAE with respect to different properties and datasets for each model.

The performance drops as the molecular size increases. This phenomenon can be observed in
most cases for all models and properties. For instance, all models’ performance for µ drops as
the molecular size gets larger (from QM9 to Al12). The results suggest the difficulty of QMALL.
Notably, for U0, U , H , G, the OOD MAEs of all models become at least 11 times larger (e.g., 19
meV to 213.3 meV), which suggests that further reducing the in-domain MAE to be lower than 6
meV might not effectively improve the extrapolation accuracy.

Better in-domain (QM9) prediction accuracy cannot always imply a better QCP predictor for
OOD extrapolation. While ET gives the best performance for all datasets in µ and ϵLUMO, its
superior in-domain accuracy on many other properties can no longer retain with larger molecules.
For instance, DimeNet++ becomes more effective than ET in U0, U , H , G, and Cv although its
performance is worse than ET in QM9. ET is also outperformed by EGNN in ϵHOMO on OOD
datasets. Another example is for EGNN, although its prediction MAE of α on QM9 is three times
smaller than that of SchNet, its OOD MAE is over 20 times larger on Al10-12.

The performance ranking for the same property is not consistent for different test datasets.
For ∆ϵ, the best model is DimeNet++ on QM9, EGNN on Al10 and Al11, and MEGNet on Al12.
This suggests model selection for extrapolation by using QM9 training dataset might not be easy.

With recent progress, the in-domain MAE of ϵHOMO on QM9 dropped from 41 meV (SchNet) to 24.6
meV (DimeNet++), and was further reduced to 23.2 meV (ET). However, if considering the OOD
MAE on Al10/11/12, DimeNet++ is 8.8/13.3/16.7 times larger than SchNet, while ET is 2.7/5.8/8.3
times larger than SchNet, respectively. On Al12, MAE of DimeNet++ is over 2000 meV while MAE
of ET is 1023 meV, which are broken for practical use. This observation calls for caution when
researchers want to employ the SOTA DL models for inference on their datasets. Note that although
ϵHOMO and ϵLUMO are both energies of the molecular orbitals, the above collapsed predictions never
appear for ϵLUMO. This might hint how black box DL models treat the two properties differently.
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Figure 2: OOD prediction of ϵHOMO on Al12 by models trained on
QM9. Selection of suitable aggregation method depends both on char-
acteristics of the physical property and the model architecture, while
ET with the highest in-domain prediction accuracy extrapolates worst.

Figure 3: OOD prediction
of ⟨R2⟩ on Al12 by models
trained on QM9.

3.2 Analysis of the importance of aggregation methods

From the perspective of physics, properties can be divided into intensive (e.g., ϵHOMO, ϵLUMO, ∆ϵ)
and extensive ones (e.g., U , U0, H and G). It has been suggested by the existing works [5, 24]
that average pooling should be applied for the intensive properties while the sum pooling should
be applied for the extensive properties. On the other hand, sum pooling gives better in-domain
accuracy for some GNN-based models. For instance, EGNN used sum pooling as the only default
aggregation method for the QM9 tasks. Another example is the provided DimeNet++ model in the
original GitHub3. It was trained with sum pooling for all 12 properties. Here, as a showcase, using
an intensive property ϵHOMO, which is the energy of the highest occupied molecular orbital, we
reported the effect of aggregation after retraining EGNN, DimeNet++ and ET with sum/mean/max
pooling on QM9. Figure 2 shows the performance of different models and pooling methods on Al12.

For ET, which ranks best in QM9, all aggregation methods are far from making the OOD inference
useful since the MAE is beyond 1000 meV. For EGNN, sum pooling gives the best performance
while OOD accuracy of all aggregation methods are within 100-115 meV.

For DimeNet++, the in-domain MAE with mean pooling (25.53 ± 0.51 meV) and max pooling
(28.06 ± 0.84 meV) are slightly worse than that with sum pooling (25.04 ± 0.42 meV) according
to five repeated experiments. If the in-domain MAE on the test set is the only criterion of model
development, sum pooling will be determined as the more suitable aggregation method. However, if
the trained models are adopted for inference on larger molecules (Al10-12), the sum pooling scheme
of DimeNet++ renders the worst ranking among all models and aggregation methods, as shown in
Table 1. Thus, it is surprising to observe that by only changing the aggregation to mean/max pooling
(where MAE becomes 77-81 meV), DimeNet++ outperforms other models.

From the results, the best aggregation method does not only depend on the characteristics of the
property, but also on the model architecture. This finding challenges the current wisdom that mean
pooling should be applied to the intensive property. Besides, the OOD behavior of DimeNet++ with
sum pooling calls for necessity of examining the extrapolation ability of proposed DL models for
practical adoption as better QCP predictors.

3.3 Analysis of error patterns

Although MAEs for the Al12 are larger than QM9, it can be observed from the error patterns that a
simple modification of prediction output can improve the performance. For instance, in Figure 2, the
large error of DimeNet++ with sum pooling can be reduced by adding an appropriate constant. It is
worth mentioning that the error pattern of ϵHOMO for DimeNet++ with sum pooling is not the unique
case, e.g., α for EGNN also shares this pattern. It is also found that changing the aggregation method
of EGNN cannot eliminate such errors. Although calculating constants for the target dataset actively
may improve the accuracy, it can be cumbersome since different constants should be calculated for
different datasets (e.g., molecules with different numbers of heavy atoms, see A2 and A3).

Adding constant values is not sufficient for all properties and models. Taking ⟨R2⟩ (the electronic
spatial extent) as an example in Figure 3. Although the linear transformation can improve the
performance of EGNN, it might not improve the performance of DimeNet++. This result emphasizes

3https://github.com/gasteigerjo/dimenet
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the different model behaviors under OOD extrapolation, and also the further study on useful prediction
adjustments towards an effective OOD QCP predictor.

4 Conclusions
The QMALL benchmark was proposed to evaluate the extrapolation ability of machine learning
models in predicting quantum chemical properties of organic molecules. Experimental results with
five well-known DL models show that the test performance drops significantly as the molecular size
increases in most cases, better in-domain accuracy may not imply better OOD accuracy, and the
performance ranking can be inconsistent between the in-domain and OOD prediction tasks. Overall,
it can be observed that the QMALL benchmark is currently very challenging for the current SOTA DL
methods compared with the benchmark on QM9 dataset. Furthermore, the importance of aggregation
methods and different error patterns were analyzed to suggest several future directions of improving
the DL methods for the extrapolation task. We believe that the proposed QMALL benchmark can be
useful for further development of DL methods that can extrapolate well in QCP prediction.

5 Broader impact

In practical molecule design or optimization, a generative model is often coupled with a QCP predictor
or DFT evaluator. As the molecule generator learns to create better molecules, the target property is
gradually optimized. Under such circumstance, our expectation of molecules with better properties
will continuously "push" the property distribution towards regions of chemical space beyond the
training set. If QCP predictors cannot work well with slightly different property distributions, the error
will accumulate when guiding the molecule generation and thus resulting in failure of continuous
optimization. Although Al10-12 and QM9 are both datasets of organic molecules, since the property
distributions between Al10-12 and QM9 are more different than those between train/valid/test splits
of QM9 (entire plots are shown in Figure A4 in Appendix), QMALL can be used as one crucial test
for revealing the OOD extrapolation capability of the proposed DL models.

ϵHOMO, ϵLUMO and ∆ϵ are important for applications such as batteries, semiconductors, alloys,
electronic devices, and photovoltaic materials. With progress in recent five years, the in-domain MAE
of ϵHOMO on QM9 dropped from 41 meV (SchNet) to 24.6 meV (DimeNet++), and was further
reduced to 23.2 meV (ET). However, not so much attention has been paid to the capability of DL
methods to extrapolate beyond the in-domain dataset, which is undoubtedly important for real-world
applications. This paper proposes an extrapolation benchmark QMALL, which reveals that there is
a gap between having preferable performance for the in-domain dataset and OOD dataset. Also, it
exhibits huge room for improvement of DL methods to excel in the extrapolation task.

One direction towards better generalization is to pre-train models on huge unlabeled datasets, and
fine-tune for downstream tasks [25–27]. It is interesting to see if OOD prediction accuracy will
increase a lot after the pre-trained models are fine-tuned on QM9, since the molecular representation
might be better after grasping more information of the chemical space.

Overall, we believe that the proposed benchmark QMALL, which takes the extrapolation capability
into account, will promote the research direction towards developing machine learning methods that
can perform OOD generalization effectively.

For negative societal impact, in our understanding, this paper does not contain any information that is
harmful to anyone in the sense that it does not contain personally identifiable information or offensive
content.
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A Appendix

In Appendix, we provide supplementary tables and figures to support the main part of the paper,
including (1) Linear regression coefficients for compensating DFT differences (Tables A1 and A2),
(2) Error pattern of R2 (Figure A1), (3) Error pattern of α for EGNN (Figure A2), (4) Error pattern
of HOMO for DimeNet++ (Figure A3), (5) Property distribution comparison between QM9 and
Alchemy datasets (Figure A4), (6) Performance drop due to bias of preparing the optimized molecular
geometries (Table A3), and (7) Visualization of different local optima for the molecule with the same
SMILES (simplified molecular input line entry specification) (Figure A5).

Table A1: Linear regression coefficients for compensating the DFT difference for µ, α, ϵHOMO,
ϵLUMO, ∆ϵ, and ⟨R2⟩ properties.

Target µ α ϵHOMO ϵLUMO ∆ϵ ⟨R2⟩

Weight

Al10 0.99792 0.94633 0.99488 0.99915 0.99777 0.99998
Al11 0.99711 0.94704 0.98807 0.99919 0.99607 0.99893
Al12 0.9976 0.95114 0.99517 1.00059 0.99898 0.99997

Bias

Al10 −0.00648 4.54114 −0.10756 −0.07546 0.01406 −0.14517
Al11 −0.00509 4.94485 −0.15179 −0.07515 0.02704 1.84113
Al12 −0.00358 4.96377 −0.1064 −0.07524 0.00811 −0.16335

Table A2: Linear regression coefficients for compensating the DFT difference for ZPVE, U0, U , H ,
G, and Cv properties.

Target ZPVE U0 U H G Cv

Weight

Al10 0.99907 1.00018 1.00018 1.00018 1.00018 0.98531
Al11 0.99908 1.00018 1.00018 1.00018 1.00018 0.98901
Al12 0.99928 1.00019 1.00019 1.00019 1.00019 0.99403

Bias

Al10 0.00201 −5.58779 −5.58524 −5.58524 −5.58895 0.57454
Al11 0.00201 −6.13298 −6.12833 −6.12833 −6.13749 0.48288
Al12 0.00052 −6.52096 −6.51658 −6.51659 −6.52961 0.27717

Figure A1: Error patterns of ⟨R2⟩ are different for different models, where linear transformation can
improve the performance of EGNN, but might not improve the performance of DimeNet++.
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Figure A2: Error pattern of α for EGNN, where
changing the aggregation method of EGNN can-
not eliminate such errors.

Figure A3: Error pattern of ϵHOMO for
DimeNet++, where simply using mean/max pool-
ing can improve the performance significantly.

Figure A4: Property distribution comparison between QM9 and Alchemy.
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Figure A5: Even for a small molecule consisting of 9 heavy atoms with the same SMILES expressions
in QM9 and Al9, the optimized geometry falls in different local optima due to bias of the structure
generation algorithm and the DFT optimization scheme.

Table A3: Inference MAE by ET for 1706 molecules with same SMILES strings both in QM9 test
split and Al9, where bias for the flowchart of preparing the optimized molecular geometries results in
the accuracy decline. In row of QM9 test, prediction is obtained with optimized geometry in QM9 as
input; in row of Al9, prediction is obtained with optimized geometry in Al9 as input where the 12
properties in Al9 are recomputed by Gaussian to compensate the DFT systematic difference.

Target µ α ϵHOMO ϵLUMO ∆ϵ ⟨R2⟩ ZPVE U0 U H G Cv
(Unit) (D) (a30) (meV ) (meV ) (meV ) (a20) (meV ) (meV ) (meV ) (meV ) (meV ) ( cal

molK )
QM9 test 0.070 0.062 27.1 20.2 42.3 0.0826 1.65 9.76 9.68 9.68 10.7 0.032

Al9 0.020 0.081 36.3 34.3 52.6 0.0935 2.55 28.1 27.6 27.3 31.1 0.069
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