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Abstract

We present extensive empirical evidence showing that current Bayesian simulation-
based inference algorithms can produce computationally unfaithful posterior ap-
proximations. Our results show that all benchmarked algorithms – (S)NPE, (S)NRE,
SNL and variants of ABC – can yield overconfident posterior approximations, which
makes them unreliable for scientific use cases and falsificationist inquiry. Failing
to address this issue may reduce the range of applicability of simulation-based
inference. For this reason, we argue that research efforts should be made towards
theoretical and methodological developments of conservative approximate infer-
ence algorithms and present research directions towards this objective. In this
regard, we show empirical evidence that ensembling posterior surrogates provides
more reliable approximations and mitigates the issue.

1 Introduction

Many scientific disciplines rely on computer simulations to study complex phenomena under various
conditions. Although modern simulators can generate realistic synthetic observables through detailed
descriptions of their data generating processes, they are unfortunately not suitable for statistical
inference. The computer code describing the data generating processes defines the likelihood function
p(x |ϑ) only implicitly, and its direct evaluation requires the often intractable integration of all
stochastic execution paths. In this problem setting, statistical inference based on the likelihood
becomes impractical. However, approximate inference remains possible by relying on likelihood-free
approximations thanks to the increasingly accessible and effective suite of methods and software
from the field of simulation-based inference [1].

While simulation-based inference targets domain sciences, advances in the field are mainly driven
from a machine learning perspective. The field therefore inherits the quality assessments [2] cus-
tomary to the machine learning literature, primarily targeting the exactness of the approximation.
Domain sciences, and more specifically the physical sciences, are not necessarily interested in the
exactness of an approximation. In the tradition of Popperian falsification, they often seek to con-
strain parameters of interest as much as possible at a given confidence level. Scientific examples

∗Equal contribution

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



include frequentist confidence intervals on the mass of the Higgs boson [3], Bayesian credible regions
on cosmological parameters [4, 5], or constraints on the intrinsic parameters of binary black hole
coalescences [6]. Wrongly excluding plausible values could drive the scientific inquiry in the wrong
direction, whereas failing to exclude implausible values because of too conservative estimations is
much less detrimental. This implies that statistical approximations in simulation-based inference
should ideally come with conservative guarantees to not produce credible regions smaller than
they should be, even when the approximations are not faithful. Despite recent developments of
post hoc diagnostics to inspect the quality of likelihood-free approximations [2, 7–12], assessing
whether approximate inference results are sufficiently reliable for scientific inquiry remains largely
unanswered whenever fitting criteria are not globally optimized or whenever the data is limited. In
this work, we measure and discuss the quality of the credible regions produced by various algo-
rithms for Bayesian simulation-based inference. All code related to this manuscript is available at
https://github.com/montefiore-ai/trust-crisis-in-simulation-based-inference.

2 Background

2.1 Statistical formalism

We evaluate posterior estimators that produce approximations p̂(ϑ |x) with the following semantics.
Target parameters ϑ denote the parameters of interest of a simulation model, and are sometimes
referred to as free or model parameters. We make the reasonable assumption that the prior p(ϑ) is
tractable. An observable x denotes a synthetic realization of the simulator, or the observed data
xo we would like to do inference on. We assume that the simulation model is correctly specified
and hence is an accurate representation of the real data generation process. The likelihood model
p(x |ϑ) is implicitly defined by the simulator’s computer code. While we cannot evaluate the density
p(x |ϑ), we can draw samples through simulation. The ground truth ϑ∗ specified to the simulation
model whose forward evaluation produced the observable xo, i.e. xo ∼ p(x |ϑ = ϑ∗). A credible
region is a space Θ within the target parameters domain that satisfies

´
Θ
p(ϑ |x = xo) dϑ = 1− α

for some observable xo and confidence level 1− α. Because many such regions exist, we compute
the credible region with the smallest volume.

2.2 Statistical quality assessment

Common metrics for evaluating the quality of a posterior surrogate assess exactness of an approx-
imation through a divergence with respect to the posterior. All approximations will diverge from
the posterior and there are no criteria to what constitutes an acceptable estimator. For this reason,
we argue that metrics evaluating the reliability for scientific inquiry should be used alongside the
divergence evaluation when evaluating estimators. This work directly assesses the quality of credible
regions through the notion of expected coverage, which probes the consistency of the posterior
approximations and can be used to diagnose conservative and overconfident approximations.

Definition 2.1. The expected coverage probability of the 1− α highest posterior density regions
derived from the posterior estimator p̂(ϑ |x) is

Ep(ϑ,x)
[
1
(
ϑ ∈ Θp̂(ϑ |x)(1− α)

)]
, (1)

where the function Θp̂(ϑ |x)(1− α) yields the 1− α highest posterior density region of p̂(ϑ |x).

Note that Equation 1 can be expressed either as

Ep(ϑ)Ep(x |ϑ)

[
1
(
ϑ ∈ Θp̂(ϑ |x)(1− α)

)]
, (2)

which is the expected frequentist coverage probability, or alternatively as the expected Bayesian
credibility

Ep(x)Ep(ϑ |x)
[
1
(
ϑ ∈ Θp̂(ϑ |x)(1− α)

)]
, (3)

whose inner expectation reduces to 1−α whenever the posterior estimator p̂(ϑ |x) is well-calibrated.

Definition 2.2. A conservative posterior estimator is an estimator that has coverage at the cred-
ibility level of interest, i.e. the expected coverage probability is larger or equal to the credibility
level.
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Figure 1: Evolution of the expected coverage w.r.t the simulation budget. A perfectly calibrated
posterior has an expected coverage probability equal to the credibility level and produces a diagonal
line. Conservative estimators on the other hand produce curves above the diagonal and overconfident
models underneath. All algorithms can lead to non-conservative estimators. This pathology tends to
be accentuated for small simulation budgets and non-amortized methods. Finally, the computationally
prohibitive results indicate that the computational requirements did not allow for a coverage analysis.
In the case of SNL, this was mostly due to high dimensional observables. For the astronomy
benchmarks, the simulation model was simply too expensive to reasonably evaluate coverage for
non-amortized methods.

3 Empirical observations

This section covers our main contribution: the collection of empirical evidence to determine whether
some simulation-based inference algorithms are conservative by nature. We are particularly interested
in determining whether certain approaches should be favoured over others. We do so by estimating
the expected coverage of posterior estimators produced by these approaches across a broad range of
benchmarks of varying complexity, including two real problems. A description of the benchmarks
can be found in Appendix A. As in real use cases, the true posteriors are effectively intractable and
therefore unknown. We make the distinction between two paradigms. Non-amortized approaches are
designed to approximate a single posterior, while amortized methods aim to learn a general purpose
estimator that attempts to approximate all posteriors supported by the prior. A description of the
inference algorithms used, including architectures and hyperparameters, are listed in Appendix B and
C. In addition, a description of the experimental protocol can be found in appendix D.

Results Figures 1 and 2 highlight our main results. Through these plots, we can directly assess whether
a posterior estimator is conservative at a given confidence level and simulation budget. The figures
should be interpreted as follows: a perfectly calibrated posterior has an expected coverage probability
equal to the credibility level. Plotting this relation produces a diagonal line. Conservative estimators
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on the other hand produce curves above the diagonal and overconfident models underneath. The
plots highlight an unsettling observation: all benchmarked approaches produce non-conservative
posterior approximations on at least one problem setting. In general, this pathology is especially
prominent in non-amortized approaches with a small simulation budget; a regime they have been
specifically designed for. A large simulation budget does not guarantee that a posterior estimator is
conservative either.

In Appendix E, we observe that the expected coverage probability of ensemble models is consistently
larger than the expected coverage probability of an individual posterior estimator. This highlights
the fact that ensembling constitutes an immediately applicable and easy way to mitigate the
overconfidence issue and build more reliable posterior estimators. However, the ensemble model
can still be non-conservative. We hypothesize that the increase in coverage is linked to the added
uncertainty captured by the ensemble model, leading to inflated credible regions. In fact, individual
estimators only capture data uncertainty, while an ensemble is expected to partially capture the
epistemic uncertainty as well. Surprisingly, we find that ensembles built using bagging do not always
produce higher coverage than individual models while they should also capture part of the epistemic
uncertainty. We could potentially attribute this behaviour to the reduced effective dataset size used to
train each member of the ensemble. In addition, a positive effect with respect to ensemble size is
shown.

Not evident from Figure 1 are the computational consequences of a coverage analysis on non-
amortized methods. Although the figures mention a certain simulation budget, the total number
of simulations for non-amortized methods should be multiplied by the number of approximated
posteriors (300) to estimate the coverage. This highlights the simulation cost associated with
diagnosing non-amortized approaches. In opposition, amortized methods do not require retraining or
new simulations to determine the empirical expected coverage probability of a posterior estimator. For
this reason, a global coverage analysis of non-amortized approaches is computationally prohibitive
and mostly impractical. More importantly, the coverage analysis of a non-amortized approach only
measures the quality of the training procedure, whereas a coverage analysis of an amortized approach
diagnoses the posterior estimator itself. In addition, a global coverage analysis not only serves as
diagnostic but also allows to partially alleviate the issue by performing post-training calibration. A
simple way for calibrating level α credible regions is to replace those by credible regions at a level
that has the desired expected coverage. Finally, non-amortized sequential algorithms have to repeat
the entire simulation-training pipeline whenever architectural or hyperparameter changes are made,
while amortized methods reuse previously simulated datasets. All of the above lead us to conclude
that while sequential methods have the benefit of being faster to train, amortized methods should be
considered for sensitive applications requiring detailed statistical validation.

4 Discussion

As demonstrated empirically, simulation-based inference can be unreliable, especially whenever its
approximations cannot be diagnosed. We are of the opinion that theoretical and methodological
advances within the field of simulation-based inference will strengthen its reliability and thereby
promote its applicability in sciences. First, although all benchmarked algorithms recover the true
posterior under specific optimal conditions, it is generally not possible to know whether those
conditions are satisfied in practice. Therefore, the study of new objective functions that would force
posterior estimators to always be conservative, regardless of optimality conditions, constitutes a
valuable research avenue. From a Bayesian perspective, Rozet et al. [13] propose using the focal and
the peripheral losses to weigh down strongly classified samples as a means to tune the conservativeness
of a posterior estimator. However, the technique is empirical and requires tuning to attain the desired
properties in practice. Dalmasso et al. [12] on the other hand consider the frequentist setting and
introduce a theoretically-grounded algorithm for the construction of confidence intervals that are
guaranteed to have calibrated coverage, regardless of the quality of the used statistic. Dalmasso et al.
[14] extends this work with finite sample guarantees. Second, in light of our results that ensembles
produce more conservative posteriors, model averaging constitutes another promising direction of
study as a simple and directly applicable method to produce reliable posterior estimators. However, a
deeper understanding of the behaviour we observe is certainly first required to further develop these
methods. Third, post-training calibration can be used to improve the reliability of posterior estimators
and should certainly be considered as a way toward more conservative inference. To some extent, this
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has already been considered for amortized methods [7, 8, 10] and would be worth exploring further,
especially for non-amortized approaches.

In summary, we show that current algorithms for simulation-based inference can produce over-
confident posterior approximations, making them possibly unreliable for scientific use cases and
falsificationist inquiry. Nevertheless, we remain confident and optimistic and advocate that our results
are only a stepping stone toward more reliable simulation-based inference and its wider adoption in
the sciences.

Broader impact

Our work constitutes an empirical demonstration of failure modes of current simulation-based
algorithms. In this regard, we believe that it could only have a positive impact by preventing
practitioners from applying such algorithms without performing diagnostics and hence prevent them
from drawing wrong scientific conclusions.
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A Benchmarks

A.1 Description

We consider 7 benchmarks, ranging from a toy problem to real scientific use cases covering various
disciplines. All benchmarks and priors are available in the codebase.

The SLCP simulator models a fictive problem with 5 parameters. The observable x ∈ R8 represents
the 2D-coordinates of 4 points. The coordinate of each point is sampled from the same multivariate
Gaussian whose mean and covariance matrix are parametrized by ϑ. We consider an alternative
version of the original task [15] by inferring the marginal posterior density of 2 of those parameters.
In contrast to its original formulation, the likelihood is not tractable due to the marginalization.

The Weinberg problem [16] concerns a simulation of high energy particle collisions e+e− → µ+µ−.
The angular distribution of the particles can be used to measure the Weinberg angle x in the standard
model of particle physics. From the scattering angle, we are interested in inferring Fermi’s constant
ϑ.

The Spatial SIR model involves a grid-world of susceptible, infected, and recovered individuals.
Based on initial conditions and the infection and recovery rate ϑ, the model describes the spatial
evolution of an infection. The observable x is a snapshot of the grid-world after some fixed amount
of time.

M/G/1 [17] models a processing and arrival queue. The problem is described by 3 parameters ϑ that
influence the time it takes to serve a customer, and the time between their arrivals. The observable x
is composed of 5 equally spaced quantiles of inter-departure times.

The Lotka-Volterra population model [18, 19] describes a process of interactions between a predator
and a prey species. The model is conditioned on 4 parameters ϑ which influence the reproduction and
mortality rate of the predators and preys. We infer the marginal posterior of the predator parameters
from time series representing the evolution of both populations over time.

Stellar Streams form due to the disruption of spherically packed clusters of stars by the Milky Way.
Because of their distance from the galactic center and other visible matter, distant stellar streams are
considered to be ideal probes to detect gravitational interactions with dark matter. The model [20]
evolves the stellar density x of a stream over several billion years and perturbs the stream over its
evolution through gravitational interactions with dark matter subhaloes parameterized by the dark
matter mass ϑ.

Gravitational Waves (GW) are ripples in space-time emitted during events such as the collision
of two black-holes. They can be detected through interferometry measurements x and convey
information about celestial bodies, unlocking new ways to study the universe. We consider inferring
the masses ϑ of two black-holes colliding through the observation of the gravitational wave as
measured by LIGO’s dual detectors [21, 22].
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SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

0.22± 0.002 0.20± 0.002 0.20± 0.002 19.08± 0.96 9.18± 0.28 545.13± 23.63 39, 369± 584

Table 1: Expected simulation time to produce 1000 simulations for all benchmark problems on a
single CPU core. The expected time and standard deviation are reported in seconds.

A.2 Expected simulation times

B Methods

We make the distinction between two paradigms. Non-amortized approaches are designed to ap-
proximate a single posterior, while amortized methods aim to learn a general purpose estimator
that attempts to approximate all posteriors supported by the prior. The architectures used for each
inference algorithm, including hyperparameters, are listed in Appendix C.

B.1 Amortized

Neural Ratio Estimation (NRE) is an established approach in the simulation-based inference lit-
erature both from a frequentist [7] and Bayesian [23–25] perspective. In a Bayesian analysis, an
amortized estimator r̂(x |ϑ) of the intractable likelihood-to-evidence ratio r(x |ϑ) can be learned by
training a binary classifier d̂(ϑ,x) to distinguish between samples of the joint p(ϑ,x) with class label
1 and samples of the product of marginals p(ϑ)p(x) with class label 0, with equal label marginal
probability. Similar to the density-ratio trick [7, 24, 26, 27], the Bayes optimal classifier d(ϑ,x) for
the cross-entropy loss is

d(ϑ,x) =
p(ϑ,x)

p(ϑ,x) + p(ϑ)p(x)
= σ

(
log

p(ϑ,x)

p(ϑ)p(x)

)
, (4)

where σ(·) is the sigmoid function. Given a target parameter ϑ and an observable x supported by p(ϑ)
and p(x) respectively, the learned classifier d̂(ϑ,x) approximates the log likelihood-to-evidence
ratio log r(x |ϑ) through the logit function because logit(d̂(ϑ,x)) ≈ log r(x |ϑ). The approximate
log posterior density function is log p(ϑ) + log r̂(x |ϑ).
Neural Posterior Estimation (NPE) [28] is concerned with directly learning an amortized posterior es-
timator p̂ψ(ϑ |x) with normalizing flows. Normalizing flows define a class of probability distributions
pψ(·) built from neural network-based bijective transformations [28–30] parameterized by ψ. They are
usually optimized using variational inference, by solving argminψ Ep(x) [KL(p(ϑ |x) || p̂ψ(ϑ |x)],
which is equivalent to argmaxψ Ep(ϑ,x) [log p̂ψ(ϑ |x)]. Once trained, the density of the modeled
distribution can directly be evaluated and sampled from.

Ensembles of models constitute a standard method to improve predictive performance. In this work,
we consider an ensemble model that averages the approximated posteriors of n independently trained
posterior estimators. While this formulation is natural for NPE, averaging likelihood-to-evidence
ratios is equivalent since 1

n

∑n
i=1 p̂i(ϑ |x) = p(ϑ) 1n

∑n
i=1 r̂i(x |ϑ).

B.2 Non-amortized

Rejection Approximate Bayesian Computation (REJ-ABC) [31, 32] numerically estimates a single
posterior by collecting samples ϑ ∼ p(ϑ) whenever x ∼ p(x |ϑ) is similar to xo. Similarity is
expressed by means of a distance function ρ. For high-dimensional observables, the probability
density of simulating an observable x such that x = xo is extremely small. For this reason, ABC uses
a summary statistic s and an acceptance threshold ϵ. Using these components, ABC accepts samples
into the approximate posterior whenever ρ(s(x), s(xo)) ≤ ϵ. In our experiments, we use the identity
function as a sufficient summary statistic.

Sequential methods for simulation-based inference aim to approximate a single posterior by itera-
tively improving a posterior approximation. These methods alternate between a simulation and an
exploitation phase. The latter is designed to take current knowledge into account such that subsequent
simulations can be focused on parameters that are more likely to produce observables x similar to xo.
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Sequential Monte-Carlo ABC (SMC-ABC) [33–35] iteratively updates a set of proposal states to
match the posterior distribution. At each iteration, accepted proposals are ranked by distance. The
rankings determine whether a proposal is propagated to the next iteration. New candidates are
generated by perturbing the selected ranked proposals.

Sequential Neural Posterior Estimation (SNPE) [36–38] iteratively improves a normalizing flow
that models the posterior. Our evaluations will specifically use the SNPE-C [38] variant.

Sequential Neural Likelihood (SNL) [15] models the likelihood p(x |ϑ). A numerical approximation
of the posterior is obtained by plugging the learned likelihood estimator into a Markov Chain Monte
Carlo (MCMC) sampler as a surrogate likelihood.

Sequential Neural Ratio Estimation (SNRE) [24, 25] iteratively improves the modelled likelihood-
to-evidence ratio.

C Hyperparameters

In this section we describe the neural architectures and hyperparameters associated with our exper-
iments. Our descriptions are complemented with the actual number of coverage evaluations. As
evident from the tables describing both amortized and non-amortized approaches, the number of
coverage evaluations for amortized approaches is substantially larger. It should be noted that, a
coverage analysis consisting of 300 posteriors of the non-amortized approaches took months on these
relatively simple problems. While for the amortized methods, a coverage analysis of 100,000 samples
was a matter of hours to a few days depending on the dimensionality of ϑ.

C.1 Amortized

C.1.1 Neural Posterior Estimation

The MLP embeddings are 3 layer MLP’s with 64 hidden units and a final latent space of 10, which is
fed to the normalizing flow. The CNN architecture in the Gravitational Waves benchmark consists
of a 13-layer deep convolutional head of 1D convolutions with a dilation factor of 2d. Where d
corresponds to the depth of the convolutional head. The SELU [39] function is used as an activation
function.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

Embedding MLP MLP MLP MLP MLP CNN MLP
Batch-size 128 128 128 128 128 64 128
Coverage samples individual 100,000 5,000 100,000 100,000 100,000 10,000 100,000
Coverage samples ensemble 20,000 5,000 20,000 20,000 20,000 5,000 20,000
Epochs 100 100 100 100 100 100 100
Model NSF NSF NSF NSF NSF NSF NSF
Transforms 3 3 1 3 3 3 3
Learning-rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 2: Architectures and hyperparameters associated with Neural Posterior Estimation.

C.1.2 Neural Ratio Estimation

Our experiments use the ADAMW [40, 41] optimizer. Accross all benchmarks, the MLP architectures
constitute of 3 hidden layers with 128 units and SELU [39] activations. The Gravitational Waves
benchmark uses the same convolutional architecture as in NPE. The resulting embedding is flattened
and fed to a MLP in which the dependence on the target parameter ϑ is added. As before, the MLP
consists of 3 hidden layers with 128 units.

C.2 Non-amortized

All our implementations of non-amortized approaches rely on the reference implementation in sbi
[42]. We use the recommended defaults unless stated otherwise. Whenever available, the same MLP
embedding network is used. It consists of 3 hidden layers with 64 units and SELU [39] activations.
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SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

Architecture MLP MLP MLP MLP MLP CNN MLP
Batch-size 128 128 128 128 128 64 128
Coverage samples individual 100,000 100,000 100,000 100,000 100,000 10,000 100,000
Coverage samples ensemble 20,000 20,000 20,000 20,000 20,000 10,000 20,000
Epochs 100 100 100 100 100 100 100
Learning-rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 3: Architectures and hyperparameters associated with Neural Ratio Estimation.

The latent space has a dimensionality of 10 features. For all sequential methods, we use 10 rounds to
iteratively improve the posterior approximation. Tasks that are tagged with the prohibitive keyword
are computationally prohibitive, but technically not intractable because the computational cost is
tied to the learning of the posterior approximation and not to the underlying (intractable) likelihood
model.

C.2.1 SNPE

Our evaluations with SNPE specifically use the SNPE-C [38] variant, as suggested by sbi [42]. To
minimize inconsistencies between experiments, we use the defaults suggested by the sbi authors
unless states otherwise. Specific changes are highlighted in Table 4.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

Batch-size 128 128 128 128 32 Prohibitive Prohibitive
Coverage samples 300 300 300 300 300 Prohibitive Prohibitive
Embedding MLP MLP MLP MLP MLP Prohibitive Prohibitive
Epochs 100 100 100 100 100 Prohibitive Prohibitive
Features 64 64 64 64 64 Prohibitive Prohibitive
Model NSF NSF NSF NSF NSF Prohibitive Prohibitive
Transforms 3 3 1 3 3 Prohibitive Prohibitive
Rounds 10 10 10 10 10 Prohibitive Prohibitive
Learning-rate 0.001 0.001 0.001 0.001 0.001 Prohibitive Prohibitive

Table 4: Architectures and hyperparameters associated with Sequential Neural Posterior Estimation.

C.2.2 SNL

In contrast to other sequential methods, our evaluations with SNL [15] add two additional computa-
tionally prohibitive or Prohibitive benchmarks. At the root of this issue lies the dimensionality of
the observable. In both cases, the dimensionality of observables caused memory issues in SNL. In
addition, training a seperate embedding model (that requires additional simulations) is outside of the
scope of this work. For this reason, we consider the Lotka-Volterra en Spatial SIR benchmark to be
Prohibitive.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

Batch-size 128 128 128 Prohibitive Prohibitive Prohibitive Prohibitive
Coverage samples 300 300 300 Prohibitive Prohibitive Prohibitive Prohibitive
Epochs 100 100 100 Prohibitive Prohibitive Prohibitive Prohibitive
Features 64 64 64 Prohibitive Prohibitive Prohibitive Prohibitive
Model NSF NSF NSF Prohibitive Prohibitive Prohibitive Prohibitive
Transforms 3 3 1 Prohibitive Prohibitive Prohibitive Prohibitive
Rounds 10 10 10 Prohibitive Prohibitive Prohibitive Prohibitive
Learning-rate 0.001 0.001 0.001 Prohibitive Prohibitive Prohibitive Prohibitive

Table 5: Architectures and hyperparameters associated with Sequential Neural Likelihood.
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C.2.3 SNRE

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

Architecture MLP MLP MLP MLP MLP Prohibitive Prohibitive
Batch-size 128 128 128 128 128 Prohibitive Prohibitive
Coverage samples 300 300 300 300 300 Prohibitive Prohibitive
Epochs 100 100 100 100 100 Prohibitive Prohibitive
Features 64 64 64 64 64 Prohibitive Prohibitive
Rounds 10 10 10 10 10 Prohibitive Prohibitive
Learning-rate 0.001 0.001 0.001 0.001 0.001 Prohibitive Prohibitive
Table 6: Architectures and hyperparameters associated with Sequential Neural Ratio Estimation.

C.2.4 Approximate Bayesian Computation

Our ABC implementation relies on the MCABC and SMCABC classes in the sbi [42] package. The
specific settings from Rejection ABC and SMC-ABC are described in Tables 7 and 8 respectively. The
quantile specifically refers to the proportion of closest samples that were kept in the final posterior.
Because our specific implementation of coverage requires the ability to describe the posterior density
function, we relied on Kernel Density Estimation to estimate the posterior density from the accepted
samples.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

Coverage samples 300 300 300 300 300 Prohibitive Prohibitive
Quantile 0.01 0.01 0.01 0.01 0.01 Prohibitive Prohibitive

Table 7: Hyperparameters associated with Rejection Approximate Bayesian Computation.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

Coverage samples 300 300 300 300 300 Prohibitive Prohibitive
ϵ decay 0.5 0.5 0.5 0.5 0.5 Prohibitive Prohibitive
Quantile 0.01 0.01 0.01 0.01 0.01 Prohibitive Prohibitive

Table 8: Hyperparameters associated with Sequential Monte Carlo Approximate Bayesian Computa-
tion.

D Experimental setup

The expected coverage probability is estimated as

1

n

n∑
i=1

1
(
ϑ∗
i ∈ Θp̂(ϑ |xi)(1− α)

)
. (5)

We consider n test simulations (ϑ∗
i ,xi) ∼ p(ϑ)p(x |ϑ) and compute their associated approximate

posteriors p̂(ϑ |xi) in a discretized and empirically normalized grid of the parameter space. The
associated credible region is the highest density credible region, i.e. a credible region of the form

Θp̂(ϑ |xi)(1− α) = {ϑ : p̂(ϑ |xi) ≥ γ} . (6)

The threshold γ is computed using a dichotomic search to produce a credible region of level 1−α. We
then estimate the empirical expected coverage probability by the proportion of nominal parameters
ϑ∗
i that falls in their associated credible region Θp̂(ϑ |xi)(1− α).

Our evaluations consider simulation budgets ranging from 210 up to 217 samples and confidence
levels from 0.05 up to 0.95. Within the amortized setting, we train, for every simulation budget,
5 posterior estimators for 100 epochs. The expected coverage probability is estimated on at least
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n = 5, 000 unseen samples from the joint p(ϑ,x) and for all confidence levels under consideration.
In addition, we repeat the expected coverage evaluation for ensembles of 5 estimators as well. Special
care for non-amortized approaches is necessary because they approximate a single posterior and
can therefore not reasonably evaluate expected coverage in the same way. Our experiments for
non-amortized approaches estimate the expected coverage by repeating the inference procedure
on 300 distinct observables for every simulation budget. The expected coverage probabilities are
subsequently estimated based on the resulting posterior approximations. Our experiments with NPE,
SNPE, SNL, SNRE, REJ-ABC and SMC-ABC rely on the implementation in the sbi package [42], while
a custom implementation for NRE is used.
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Figure 2: Analysis of coverage between ensemble and individual models w.r.t the various simulation
budgets. The blue line represents the mean expected coverage of individual models over 5 runs, the
shaded area represents its standard deviation. The black line represents the expected coverage of
a single ensemble composed of 5 models. We observe that ensembles consistently have a higher
expected coverage probability compared to the average individual model. A similar effect is not
always observed with bagging, indicated by the red line. Ensembles are only evaluated for amortized
approaches such as NPE and NRE.
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Figure 3: Evolution of the empirical expected coverage probability with respect to ensemble size
for various confidence levels. The results are obtained by training 100 ratio estimators (NRE) on the
SLCP benchmark. A positive effect is observed in terms of empirical expected coverage probability
and ensemble size, i.e. a larger ensemble size correlates with a larger empirical expected coverage
probability. This is unsurprising, because a larger ensemble is expected to capture more of the
uncertainty that stems from the training procedure.
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