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Abstract

There are many cases in collider physics and elsewhere where a calibration dataset
is used to predict the known physics and / or noise of a target region of phase
space. This calibration dataset usually cannot be used out-of-the-box but must
be tweaked, often with conditional importance weights, to be maximally realistic.
Using resonant anomaly detection as an example, we compare a number of alter-
native approaches based on transporting events with normalizing flows instead of
reweighting them. We find that the accuracy of the morphed calibration dataset
depends on the degree to which the transport task is set up to carry out optimal
transport, which motivates future research into this area.

1 Introduction

Many tasks in collider physics depend on the calibration of auxiliary datasets. Data from a well-
understood region of phase space are chosen as a reference to model the known physics in a target
region of phase space. When the reference and known physics in the target are identically distributed,
differences between the reference and target would indicate the presence of new phenomena. However,
the reference data may be a distorted version of the known physics in the target and so corrections
need to be applied. The reference is chosen to be as similar as possible to the known physics in the
target so that the corrections applied should be small.

Traditionally, this calibration task has been performed using importance weights estimated from ratios
of histograms, either using data-driven approaches like the control region method or fully data-based
approaches like the ABCD or Matrix Method techniques (see e.g. Ref. [1] for a review). These
methods can be generalized to the unbinned (and high-dimensional) case with machine learning-based
likelihood ratio estimation [2–4]. An alternative approach that may be more precise, especially when
the reference and target probability densities have regions of non-overlapping support, is to morph the
features themselves. Given a reference distribution XR ∼ pXR

and a target distribution XT ∼ pXT
,
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a mapping function f : XR → XT is chosen so that the probability density of the transformed
reference f(XR) is as close a match as possible to the probability density of the target.

Optimal transport (OT) has been studied in collider physics to solve the calibration problem [5]. In
this paper, we focus on the case of conditional morphing, where XR and XT are conditioned on an
observable M (often a mass, thus the symbol), and we set f(·|M) : XR|M → XT |M . The reason
for this setup is that the morphing function is typically learned in a background-dominated region
and then interpolated or extrapolated in M to a signal-sensitive region. This setup was first explored
in collider physics in Ref. [6] and uses normalizing flows (NFs) [7]. These NFs are not specifically
tasked with making the morphing minimal. This our goal in this paper is to explore how minimal
these moves are and examine if tweaks to the setup can bring these moves closer to the OT solution
and thus improve model fidelity for downstream inference tasks. As in Ref. [6], we use anomaly
detection as our numerical example.

This paper is organized as follows. In Sec. 2, we introduce the application of normalizing flows to the
problem of resonant anomaly detection and describe our dataset and training procedure. Numerical
results are presented in Sec. 3, and we discuss future directions in Ref. Sec. 4.

2 Methods

Resonant or group anomaly detection (see e.g. Ref. [8]) in collider physics begins with a resonant
feature M . A potential signal will have |M −M0| ≲ c (which defines the signal region) for some
unknown M0 and often knowable c. The value of M0 is usually found through a scan. Additional
features X ∈ RN are chosen which can be used to distinguish signal from background. Weakly
supervised methods learn a classifier acting on X that can distinguish signal region events in the
target from events in the reference [2, 6, 9–13]. Approaches vary on how they construct the reference,
but most use sideband information (|M − M0| ≳ c) to some degree. The first use of NFs in this
context was in Ref. [11], which used NFs as a generative model. In contrast, the idea of Ref. [6] is to
use NFs as the morphing functions described in the previous section.

Normalizing flows are neural networks that can approximate the density of complex data through
a composition of relatively simpler functions with a tractable Jacobian: L = log p(z) +

∑
log Ji,

where L is the loss, p(z) is the base distribution, and Ji is the Jacobian when transforming from the
ith function to the (i+ 1)th function in the composition. We consider multiple ways of training the
flow:

1. Double Base. We learn two conditional NFs, one that maps from a standard normal
z ∼ N (0, 1)N to the target fT (·|M) : z|M → XT |M and one from a standard normal to
the reference fR(·|M) : z|M → XR|M . The morphing function is then fT ◦ f−1

R .
2. Base to Data. We learn a conditional NF for the reference fR(·|M) : z|M → XR|M and

then use this as the base density to learn a second flow from the reference to the target
f(·|M) : XR|M → XT |M .

3. Identity Initialization. Same as (2), but we initialize the mapping at the identity function.
This is done by first learning the mapping f(·|M) : XR|M → XR|M , then using transfer
learning to adapt this flow to map XR to XT .

4. Movement penalty. Same as (2), but we add a term to the loss function that explicitly penal-
izes movement in the parameter space, L2 = α∥XR − f(XR|M)∥2 for a hyperparameter
α.

To evaluate the performance of the models, we study how far the events were moved, |XR −
f(XR|M)| as well as the fidelity of the move, quantified by the (ideally poor) performance of a
post-hoc classifier trained to distinguish the interpolated reference from the target in the signal region.

2.1 Dataset

We use the LHC 2020 Olympics R&D dataset [14, 15] which consists of 1M background (Standard
Model) events and 100k signal/anomaly events. Our setup is nearly the same as in many previous
resonant anomaly detection studies with the same dataset [2, 6, 9–13]. The events naturally live in a
high-dimensional space (each containing hundreds of particles with a momentum), but we consider a
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five-dimensional compressed version that has been extensively studied in collider analyses. These
five features, along with the resonant feature, are displayed in Fig. 1. The reference dataset consists
of 1M events from one simulator while the target consists of 1M background events from a different
simulator. As we are investigating the background estimation, no anomalous events are part of the
training or testing in this paper.
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Figure 1: Reference and target distributions used in this study The feature space is comprised of the
resonant feature M and five other features mJ1

, ∆mJJ , τ21J1
, τ21J2

, and ∆RJJ . A description of these
observables can be found in [16]. The signal region is defined by |M −M0| < c for M0 = 3500 and
c = 100.

2.2 Training procedure

To generate flows that map from z ∼ N (0, 1)N to a reference / target distribution, we use the highly
expressive MADE autoregressive (AR) module [17]. We use 8 modules consisting of 8 stacked
piecewise rational quadratic transformations, interleaved with a reverse permutation of all dimensions.
Each masked linear layer of the MADE modules has dimensions (64, 64). The resonant feature M is
embedded in a linear network of size (1, 64). We train for 60 epochs with a batch size of 128, a a
cosine annealing learning rate initialized at 10−4, and a weight decay of 10−4.

To generate flows that map between the reference and target distributions (which are relatively similar
to each other), we use a more lightweight architecture consisting of a coupling model with piecewise
rational quadratic transformations. These flows contains 2 stacked layers interleaved with a reverse
permutation, with each masked linear layer having dimensions (16, 16). We train for 40 epochs with
a batch size of 256, a cosine annealing learning rate initialized at 4× 10−4, and a weight decay of
10−4.

The training dataset is comprised from the sidebands of the resonant feature M , which ensures that the
signal region is kept blinded until testing. All flows are constructed using the NFLOWS package [18],
trained using PYTORCH [19], and optimized using ADAM [20]. All hyperparameters are optimized
through grid search. For each training method, we repeat the flow training 5 times with a different
random seed.

3 Results

We evaluate the learned mappings from reference XR to target XT for the four training procedures
proposed in Sec. 2 in two ways: (1) we observe how far in parameter space points from the reference
travel as they are mapped to the target distribution, and (2) we evaluate the fidelity of the mapping
through training a classifier to discriminate XT from f(XR|M).

The mappings are evaluated in the signal region (|M −M0| < 100), in training sidebands regions
(100 < |M −M0| < 300), and additionally in outer sidebands regions (300 < |M −M0| < 500).
This allows us to gauge the performance of the mapping in both interpolation and extrapolation tasks.

3.1 Distanced moved in parameter space

In Fig. 2, we show the distances traveled in feature space for each data point XR that is mapped to
the target distribution by f(XR|M). In Sec. A, we show the distances traveled for features X2 and
X3, which according to Fig. 1 are the ones that are most different between the reference and target
distributions.
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Figure 2: Distance traveled in the full parameter space under a mapping from reference XR to target
XT . The data is preprocessed so feature lies in the interval (-3, 3), so the maximum possible distance
traveled is ∼ 13. We provide the mean distances traveled ±1σ errors.

Band Double Base Base to Data Identity Init. L2 (α = 10−2)
OB1 0.630 ± 0.024 0.511 ± 0.003 0.508 ± 0.004 0.507 ± 0.002
SB1 0.501 ± 0.000 0.502 ± 0.001 0.501 ± 0.000 0.502 ± 0.001
SR 0.553 ± 0.011 0.503 ± 0.001 0.503 ± 0.001 0.503 ± 0.000

SB2 0.501 ± 0.000 0.503 ± 0.001 0.503 ± 0.001 0.502 ± 0.001
OB2 0.594 ± 0.030 0.506 ± 0.002 0.507 ± 0.004 0.507 ± 0.003

Table 1: ROC scores for a binary classifier trained to discriminate mapped reference f(XR|M) from
target XT . The scores are calculated separately for different regions of the resonant parameter.
(OB1, OB2) = (low, high) mass outer bands; (SB1, SB2) = (low, high) mass sidebands; SR = signal
region. We provide the mean ROC scores ±1σ errors.

The Double Base method produces a vastly larger range of distances traveled than the other three
methods, which is to be expected as the training procedure contains no explicit link between the
reference and target distributions. The Movement Penalty method has the smallest mean distance
traveled in the entire and individual feature space(s), although by a narrow margin.

3.2 Fidelity of transform

In Table 1, we provide the ROC scores for a binary classification neural net trained to discriminate
f(XR|M) from XT . The classifiers are dense networks of three hidden layers and 32 nodes, all with
RELU activation. We train the binary classifiers for 20 epochs with a batch size of 128 and a cosine
annealing learning rate initialized at 10−3,

For the purpose of this report, we define a “random" classifier to have a ROC score < 0.51. A
successful mapping between the reference and target distributions would result in the trained binary
classifier performing no better than random.

All four training procedures show good fidelity in the sidebands regions (recall that this comprises
the training dataset region). All methods except the Double Base method also show good fidelity
when evaluated in the signal region. All methods exhibit a drop in performance when evaluated in the
outer bands regions, but only the Double Base method drops enough to lose fidelity.

4 Future areas of study

In this work, we have explored modifications to the training procedure for a normalizing flow tasked
with learning a mapping between a reference and a target dataset. Our explored application uses
reference and target datasets that are similar, as might be expected in the collider physics calibration
problem of modeling known physics in a specific region of phase space.

The Double Base method is clearly suboptimal in terms of optimal transport and mapping fidelity,
likely due to the fact that it transports between the reference and the target through an uncorrelated
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standard normal distribution. The other three methods (Base to Data, Identity Initialization, and
Movement Penalty) show comparable performances in both metrics, and in fact all meet the re-
quirement of being a faithful mapping due to the indiscriminability of XT from f(XR|M). In this
situation where the reference and target sets are similar, using the Base to Data method is acceptable.
However, this method may not be adequate for more complex (transformations between) datasets.

As an avenue for future investigations, we may consider exchanging a normalizing flow for a
continuous normalizing flow (CNF) [21]. Such a flow restricts transformations to be continuous, such
that each point can be assigned a trajectory with a velocity vector. Building upon this, the OT-Flow
method [22] adds to the CNF loss both an L2 movement penalty and a penalty that encourages the
mapping to transport points along the minimum of some potential function. Such alternatives might
be explored for situations when the reference and target distributions are significantly different.

5 Potential Broader Impacts

In this work, we have explored methods to augment the training of normalizing flows that learn
mappings between probability distributions derived from LHC-like particle collision datasets. How-
ever, these modifications could be used to improve the performance for any normalizing flow-like
architecture, regardless of the physical origin of the reference and target datasets. Our work could
then be beneficial to any physical problem that relies on the creation or transformations of probability
distributions. Since our work serves as a method to improve an existing architecture, rather than
to define a new analysis procedure, it is our belief that this work does not present any foreseeable
societal consequence.

Code availability

The code for all experiments in this report can be found at https://github.com/rmastand/FETA.
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A Appendix

Here, we provide supplementary plots for the distances traveled in X2 and X3 space for each data
point XR that is mapped to the target distribution by f(XR|M). The other three features did not
show appreciable movement after training, likely due to the similarity of their distributions between
the reference and the target datasets.
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Figure 3: Distance traveled in a single dimension of the parameter space under a mapping from
reference XR to target XT . The maximum possible distance traveled is 6. We provide the mean
distances traveled ±1σ errors.
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