Employing CycleGANSs to Generate Realistic STEM
Images for Machine Learning

Abid Khan
Department of Physics
University of Illinois at Urbana-Champaign
Urbana, IL 61801
aakhan3Qillinois.edu

Chia-Hao Lee
Department of Materials Science and Engineering
University of Illinois Urbana-Champaign
Urbana, IL 61801
chiahao3@illinois.edu

Pinshane Y. Huang Bryan K. Clark
Department of Materials Science and Engineering Department Physics
University of Illinois Urbana-Champaign University of Illinois Urbana-Champaign
Urbana, IL 61801 Urbana, IL 61801
pyhuang@illinois.edu bkclark@illinois.edu
Abstract

Identifying atomic features in aberration-corrected scanning transmission electron
microscopy (STEM) data is critical to understanding structures and properties of
materials. Machine learning (ML) models have been applied to accelerate these
tasks. The training sets for these ML models are typically constructed with codes
that provide simulations of STEM images alongside desired labels. However,
these simulated images are often limited by the oversimplified model and deviate
from the experimental images, limiting the accuracy and precision of ML training.
We present an approach to generating realistic STEM images by employing a
cycleGAN to automatically add realistic microscopy features and noise profiles to
simulated data. We also train a defect-identification neural network using these
generated images and evaluate the model on real STEM images to locate atomic
defects within them. The application of CycleGAN provides other machine learning
models with more realistic training data for any type of supervised learning.

1 Introduction

Historically, experimental data is acquired and then analyzed in a way that often requires significant
human input. In the context of scanning transmission electron microscopy (STEM) data, this typically
involves identifying aspects of the material such as atom locations, atom types, and atomic defects by
hand. Recently, Lee et al.| [2020] automated the process of identifying atomic defects on massive
datasets using machine learning techniques, where a very large number of single-atomic defects were
collected to measure their induced strains at a sub-picometer precision. These measurements prove to
be vital in understanding the structure and properties of 2D materials, and machine learning is critical
to accomplish this at the scale necessary to collect the requisite statistics.
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Training a neural network to automatically label image properties such as defect locations requires
a large training set of data. While high accuracy training data can be generated directly from
experimental data, this partially defeats the purpose of using ML in the first place as a domain expert
is needed for this labelling. To attempt to get around this, we generate artificial data as a training set
from an experimental simulator. Unfortunately, the output of such simulators differs from experiment,
typically requiring simulated data to be digitally altered, often through manual user input, to replicate
experimental data. It is this problem we will address in the context of STEM in this paper. In
particular, we develop a CycleGAN which takes simulated data and modifies it so as to be largely
indistinguishable from actual experimental images. We proceed to demonstrate the efficacy of our
cycleGAN by using it to generate training data for a fully convolutional neural network (FCN) to find
single-atomic defects in experimental STEM images.

2 The Data: Experimental STEM Images vs Simulated Images

For a cycleGAN, we require two sets of images to style-transfer between. The first set of images
is experimentally obtained STEM images. The second set is simulated STEM images. For the
experimental images, we acquire aberration-corrected annular dark-field (ADF) STEM images of
three materials: graphene, WSe, , and SrTiO; (STO). We particularly focus on the acquisition of
WSe, , where capturing images occurred on two days, acquisition day A and day B forming two
datasets; we include a third dataset AB which includes both days of STEM images.

We used Incostem, an incoherent STEM image simulation software bundled in the CompuTEM pack-
age to obtain the simulated STEM image which corresponds to a ‘pristine image of the experimental
material (see [Kirkland|[2022]). These simulation images come with labels (such as defect locations)
that will not be seen by the cycleGAN but are critical for the training of other machine learning
models and therefore must be preserved by the cycleGAN. Incostem can produce arbitrarily large
training datasets.

The simulation images deviate non-trivially from the experimental images in that the simulations do
not fully capture the microscopy conditions or the background contamination in the material. Such
deviations include detector noise, electrical noise, scan distortion, sample drift, surface contamination,
damage, and aberration (see Madsen et al.|[2018]]). A cycleGAN transforms simulation images to
automatically incorporate these realistic microscopy and material conditions. As explained by Zhu
et al.| [2017]], cycleGANSs are often used in image processing and have been successful in transferring
the style of one image set to another such as converting a photographed image into a "Monet"-
like painting. The goal of our cycleGAN, then, is to perform a "style transfer" from a dataset of
experimental STEM images to a dataset of simulated images.

3 The cycleGAN

It is important that our images not only look experimentally realistic but also that the labels corre-
sponding to feature locations stay stable - i.e. it is a failure if the generator scrambles the location
of all of the features from the simulated image. CycleGANs add significant machinery on top of
standard GANSs to resolve this problem by ensuring that the local features, and hence labels are
preserved. The cycle-consistency loss and the identity loss serve as necessary regularization terms to
enforce the preservation of these local features.

In most common datasets of images, almost all of the information is captured in its real-space image.
Atomic scale images of crystals, however, exhibit significant periodicity, and so momentum space
information is highly relevant. The Fourier space of these images must also look realistic then, so we
add two discriminators in addition to the conventional cycleGAN described by |Zhu et al.|[2017]] that
distinguish the amplitude of Fourier transforms of both simulated images and realistic experimental
images. Figure [T]illustrates the full cycleGAN model that is implemented. Each generator is then
trained to not only fool a real-space image discriminator, but also a momentum-space discriminator.

Khan et al.| [2022]] provides the full code for the cycleGAN along with an FCN model to detect
single-atomic defects. The generators follow a U-net architecture, while the discriminators are
patch-level as described by [Zhu et al.[[2017]]. To prepare the datasets for training, for each dataset we
normalize all the 1024x1024 images and cut them into 256x256 pieces. The batch-size is 32, however
when adding each piece into the batch, they are randomly rotated by a multiple of 90 degrees, and they



Cycled Exp. STEM

Exp. STEM
Generator| >

Real Exp. STEM' Identity Loss [

Incostem WExp. STEM
Generator| Generator,

Generated Incostem [§

Identity Exp. STEM

Incostem
FFT
Discriminator

Exp. STEM
FFT
Discriminator

Incostem
Discriminator

Exp. STEM
Discriminator

P
\>
Generated Exp. STEM

—

P Incostem [Exp. STEM
Generator Generator|

Identity Incostem

< Incostem
Generator|

Cycled Incostem

Figure 1: Schematic of our cycleGAN. Along with the conventional two generators and two dis-
criminators, we have two additional discriminators for the FFTs of the experimental STEM images.
We show the cycle-consistency (identity) loss as minimizing the difference between the vertical
(horizontal) images grouped in the cyan (magenta) box.

are also sometimes inverted. The simulated images initially contain no noise, which is detrimental to
a cycleGAN because a sufficient amount of variability is required to generate unique images. We add
to the “pristine” simulated images, Gaussian noise to ensure enough variability across the simulation
dataset. Each pixel in the image is adjusted by a Gaussian distribution of A/(0,0.1). All networks
were trained for 200 epochs, where in the first 100 epochs, the learning rate was 0.002, and from
epochs, 100-200, the learning rate linearly decayed to zero. For the cycle-consistency loss, A was 10,
and for the distortion loss, A was 5. These hyperparameters were determined after substantial tuning
and testing, where we trained an FCN to find defects in WSe; , and chose the cycleGAN model that
provided the best results.

We use Google’s Tensorflow backend with the National Center for Supercomputing Application’s
(NCSA) Delta cluster. We train a cycleGAN for 9 datasets, and use 1 NVIDIA A40 GPU per training.
Training a single cycleGAN for 200 epochs takes about 6 hours of compute time.

The main objective of our cycleGAN is to develop a generator which turns simulated images into
experimental-like data; given such a device, we can then use it as a source to generate an arbitrarily
large amount of training data by generating simulated data which is then processed by the cycleGAN
to make it appear experimental. We apply our cycleGAN in this way to detect single-atom defects in
experimentally obtained STEM images of an alloyed 2D transition metal dichalcogenide (TMDC)
monolayer WSe; . First we acquire experimental and simulated STEM images of the material that
contains defects; importantly the simulated STEM images also contain labelled defect locations.
Given these two datasets, we train a cycleGAN to perform “style-transferring” between them provid-
ing us with a generator that turns simulated STEM images into realistic-looking experimental STEM
images. Using this generator, we construct a dataset of generated experimental STEM images. We
take this dataset alongside their corresponding atomic defect locations, and train a fully convolutional
neural network (FCN) to locate defects in the generated experimental STEM images. With this FCN
trained, we can feed it real experimental STEM images to locate where their defects lie. Note that the
efficacy of this process validates that the defect labelling is largely preserved.
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Figure 2: Prototypical images of graphene (left two columns), WSe, (middle two columns), and
SrTiOs (right two columns). Each column displays the real space image along with its Fourier
transform next to it. For each material, we show an image from Incostem (top row), its generated
STEM image after passing through a cycleGAN (middle row), and a prototypical experimental STEM
image (bottom row) for comparison.

4 Results

Figure |z| show cycleGAN results of Graphene, WSe, , STO. Qualitatively, we see that both the
real-space and momentum-space generated images are nearly indistinguishable to the experimental
STEM images even to domain experts and both are relatively distant from the original simulated
images.

To get a more quantitative evaluation of the images generated from cycleGANs, we look at how well
they work in defect identification training. Using the generated STEM images of WSe, along with
the given locations of single chalcogen-site vacancies, we train a res-unet FCN to locate Se vacancies
in experimental STEM images of WSe, . The experimental dataset of WSe; is divided into two
datasets: day A and day B. In each of these days, we manually labeled single-vacancy defects in
3 1024x1024 images so as to validate our results. We then evaluate our FCN on these images, and
compare the predicted single-vacancy locations with the manually labeled single-vacancy locations.

We train a set of FCNs using different initial training data. The first training dataset we use is
simulation data without any noise - i.e. Incostem data without any processing. The next few training
sets are generated via cycleGAN on datasets A, B, and AB, respectively. We use the same set of
experimental images for both training the cycleGAN as well as for labelling defects; this ensures the
cycleGAN correctly identifies the microscopy conditions that are present (which drift over time) in
that particular set of images that we are labeling. Table[T]shows the precisions, recalls, and F1 scores
of the FCN given the training dataset that was used.

There are two key take-aways of these results. First, we find adding noise into the simulated dataset
is necessary for the FCN to locate defects in experimentally obtained STEM images. The F1 scores
for the noiseless datasets perform relatively poorly. When adding noise from a cycleGAN, the FCN
performs significantly better. Secondly, we ask the question, how much data does one want to use to
train a GAN. There is an inherent tension here. The more data, the more robust the GAN will be. On
the other hand, over time microscopy and material conditions change and so training a GAN on a set
of images taken over a longer stretch of time will result in images that are not as perfectly matched
with the given image you are trying to train on. We find, in our analysis, that the sweet spot appears
to be to train over single days of data (100-200 1K-images).

5 Conclusion

We successfully construct a cycleGAN model to generate realistic experimental STEM images from
simulation. This was done by ensuring that the generators not only make the real-space images look
realistic, but also its momentum space. We demonstrate the ability for this generator to construct
training data by training an FCN to find single-atom defects trained with data generated from a



Table 1: Precisions (P), Recalls (R), and F1 Scores (F1) of FCN defect-identification models.

Day A Day B Day AB
P R F1 P R F1 P R F1

no noise 15 8 25 66 84 74 22 83 35
cycleGAN 85 79 82 87 91 8 89 63 74

cycleGAN. While this technique was meant for generating training data for STEM ML models
initially, we can extend this idea to any supervised learning problem where real data lacks labels,
but there exists an efficient simulation that construct input data with labels but not necessarily with
realistic experimental conditions.

6 Broader Impacts

Employing machine learning has been shown to be highly instrumental in understanding the physics
of materials. While the ability to construct realistic-looking experimental STEM images is critical in
training ML architectures to analyze scientific data at scale, there are concerns, most clearly being
generating fake STEM images and having them be passed off as real scientific data. These cycleGANs
that have been constructed have the ability to generate STEM images that may seem indistinguishable
from real STEM images. One could then construct simulation images that are tailored to an authors’
theory, pass it through a trained cycleGAN, producing "experimentally-obtained" STEM images,
and show that experiment confirms the theory. While this may be concerning, it also drives us to
study more quantitatively the differences between real and generated STEM images and is a part of a
broader societal challenge of distinguishing real from computer-generated images.
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