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Abstract

Cloud microphysical parameterizations in atmospheric models describe the for-
mation and evolution of clouds and precipitation, a central weather and climate
process. Cloud-associated latent heating is a primary driver of large and small-scale
circulations throughout the global atmosphere, and clouds have important interac-
tions with atmospheric radiation. Clouds are ubiquitous, diverse, and can change
rapidly. In this work, we build the first emulator of an entire cloud microphysical
parameterization, including fast phase changes. The emulator performs well in
offline and online (i.e. when coupled to the rest of the atmospheric model) tests,
but shows some developing biases in Antarctica. Sensitivity tests demonstrate that
these successes require careful modeling of the mixed discrete-continuous output
as well as the input-output structure of the underlying code and physical process.

1 Introduction

Weather forecasts and climate simulations are predominantly made by evolving atmospheric and
oceanic fluid dynamics forward in time on a discrete global grid. Most atmospheric models are
organized into a dynamical core, which evolves the Navier-Stokes equations on the rotating sphere,
and the “physics” which handle everything else such as cloud formation, rain, and boundary layer
turbulence.
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Replacing climate model physical parameterizations with machine learning models is known as
emulation. Emulation provides a principled path towards accelerating Fortran model codes, especially
for use on computing architectures reliant on accelerators such as GPUs which can efficiently run
many machine learning (ML) applications. Because of this, most emulation studies have focused on
radiative transfer [4, 9], which is the slowest sub-component in the typical atmospheric physics suite.
However, recent studies have emulated deep convection [10], gravity wave drag [3], atmospheric
chemistry [7, 8, 12], and the warm rain process [5]. In spite of these successes, no general purpose
approach to emulation has emerged and consistently high accuracy over all timescales and spatial
locations has been elusive.

Emulation is also an excellent test-bed for more complex ML approaches to improve physical
parameterizations since it is very clearly posed as a supervised learning task. It can be argued that
successfully emulating a given climate model component is a necessary first step before trying to
improve that component e.g by training models with fine resolution data [1, 11, 13, 2]. This work
often focuses on moist atmospheric physics, a notoriously difficult process to parameterize. One key
moist process is the cloud microphysics scheme, which handles fast phase changes like condensation,
evaporation and precipitation. Microphysics are tightly coupled to the dynamical core through
the corresponding latent heat release. Since cloud microphysics are computationally cheaper than
radiation, no study has yet tried to emulate an entire microphysics scheme including phase changes.
However, in view of its importance and its contrasting character to radiation, this is a worthy and
educational ML challenge.

In this study, we train ML models to emulate an simple microphysical scheme written in Fortran,
including the phase changes. We will show that our best scheme has excellent offline skill and works
well, but not perfectly, online when coupled to the rest of the atmospheric solver.

2 Methods

The training data are generated by running the FV3GFS weather model [15, 6] with the simplified
Zhao-Carr (ZC) microphysics (Appendix A), for simplicity. The ZC microphysics predict changes in
cloud liquid and ice condensate, precipitation, and associated heating and moistening rates at each
grid point in a grid column given a corresponding column of thermodynamic inputs. The change
of temperature T , cloud c, or humidity q by the ZC microphysics is defined as ∆ = ∆g +∆p. ∆g

is the change to due the grid-scale condensation subroutine (gscond). ∆p is the change due the
precipitation subroutine (precpd). We added hooks before and after these subroutines that are used
both for saving the data and applying the ML emulators online.

FV3GFS is a compressible atmospheric model used for operational weather forecasts by the US
National Weather Service. For that purpose, it is run with a cubed-sphere grid of approximately
13 km horizontal spacing and 64 vertical levels. For the results shown here, the grid spacing of
the model is approximately 140 km resolution (C48) and there are 79 vertical levels. This coarser
horizontal resolution greatly speeds up online testing of the emulated parameterization.

The training simulations are initialized from the GFS analysis from the first day of every month
of 2016. The ZC inputs/outputs are saved every 5 hours in order to sample all times of day as the
simulation progresses. The simulations of Feb, June, and Sept are reserved for validation. Overall the
training set contains 1296 snapshots each consisting of 482 · 6 = 13 824 atmospheric columns.

The net condensation ∆gc at a given grid point (x, y, z) in 3D space depends only on the thermody-
namic inputs there, a property we refer to as grid-point locality. To exploit this locality, the gscond
subroutine is emulated with a single multi-layer perception which is applied to each grid-point sepa-
rately. The inputs and hyper-parameters are listed in Appendix C.1. Notably, the input set includes T ,
q, and pressure p. In all the emulator takes in 14 scalar input channels and predicts a single scalar
output: the net change ∆gc in cloud condensate. For online applications, we use the Fortran code
instead of the emulator in the top 5 vertical levels since ∆gc = 0 there for all training samples. The
results are similar when we directly enforce that ∆gc = 0. Since ∆c depends exponentially on
temperature we normalize it by the standard deviations computed within bins of temperature. The
corresponding change in specific humidity over the condensation step is −∆gc, satisfying total water
conservation. The temperature change is (Lv/cp)∆gc where Lv is the latent heat of vaporization
and cp is the specific heat of air at constant pressure. This is an approximation since some ZC phase
changes occur between ice and vapor which releases additional latent heat.
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For approximately 80% of samples, either the condensate change ∆gc or the cloud after gscond
vanish. The regression model above makes small, but nonzero errors in these cases which accumulate
in time and cause poor online performance. To avoid this, we train a classifier to identify such points
(see Appendix C.2.2) with the same inputs as the grid-point model described above. This classifier is
used online to either deactivate ∆gc, remove all the cloud, or return the grid-point model’s output.

The precpd subroutine is vertically non-local so we use a different architecture to predict ∆p using
the same input variables as the gscond emulator. Because rain falls down rather than up, the predicted
change at a given height of T , q, and c depend only on data from overlying grid points. We encode
this causal assumption using an RNN which takes in a top-of-atmosphere to surface sequence of
thermodynamic fields R79 × R14 and maps to ∆p ∈ R79 × R3. The surface precipitation is also
output as a trainable affine transformation of the final hidden RNN state (at the surface). A two-layer
vanilla RNN is used with ReLU activation, and 256 hidden nodes in each layer. As a sensitivity
test, we also train a two-layer column-dense model for this task with 256 hidden nodes in each
layer. Because heat and water conservation are not trivially enforced like they are for gscond we
predict the change of all three thermodynamic variables separately at the risk of violating appropriate
conservation laws.

All the models above are trained separately on the full training set with the Adam optimizer and
a batch size of 512 columns. Mean-squared-error losses are used for regression models and cross-
entropy is used for the gscond classifier. Hyper-parameters were not tuned exhaustively in this work
apart from ensuring that the initial loss is O(1) and stochastic gradient descent is stable. Both the
precipitation and condensation regression models are trained by stochastic gradient descent over 25
epochs, with the Adam optimizer, a learning rate of 0.0001, a batch size of 512 columns (40 448 grid
points). The classifier is trained with an increased. learning rate of 0.001.

All computations were performed on Google Cloud Platform. Training a model for 25 epochs takes 8
hours on a NVIDIA Tesla P4 GPU. On an 8 processor node, a 30 day FV3GFS simulation takes 5
hours to complete without ML and 10 hours with ML emulators.

3 Results

For each ML configuration, we run two simulations, one where the ML is active and another where
the Fortran is active. The inactive scheme still saves data, so that we can compute skill metrics.
Metrics are computed over 30-day simulations initialized at the end of the June simulation from the
training data. Even though this overlaps in time with the July training data, it represents a unique
testing dataset since it was initialized with the final state of the June training simulation rather than
the July 1 GFS analysis.

We consider five metrics—the offline and online skill at predicting the T and c tendencies as well
as the bias of the global mass of cloud water condensate per unit surface area (i.e. cloud water
path) on July 15. The Fortran-simulated cloud water path at this time was 102 gm−2. The tendency
metrics measure the skill compared to the saved Fortran tendencies as given by a modified R2 score
1−

∑
(y − ỹ)2/

∑
y2, where y is the truth and ỹ is the prediction.

We first examine the offline and online metrics for runs where the subroutines gscond and precpd are
replaced by ML one-at-a-time (Table 1). Neural network architecture matters when replacing precpd.
Using the RNN instead of a dense model improves the offline skill score for condensate tendency
significantly, but the improvement in online skill is more dramatic: the cloud bias is 20x worse with
the dense model. This large increase in cloud pushes the online states far from the envelope of the
training data so the offline skill scores degrade. This is a typical failure mode we have witnessed
throughout this project. Typically, the ML-predicted tendencies are fairly insensitive to state drift,
but the Fortran physics produces very large tendencies as they attempt to correct small physical
inconsistencies introduced by the ML such as super-saturated air or negative cloud concentrations.
The RNN avoids these deficiencies.

Using the classifier helps when replacing the just gscond scheme (Table 1, but the the impact is far
more dramatic in an online simulation where both precpd and gscond are replaced by ML emulators
(Table 2). In this run, precpd is replaced by the RNN and gscond is replaced with a dense-local
model both with and without classifier-based masking. Classifier-based masking is essential for good
online skill.
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Table 1: Table of skill scores for the precpd or gscond emulators. The online skill scores are
computed in an online run where only the indicated subroutine is emulated.

α = precpd α =gscond
Dense RNN No classifier Classifier

Offline ∆αc Skill 94% 98% 99% 99.2%
Offline ∆αT Skill 92% 98% 98.50% 98.7%
Online ∆αc Skill 14% 95% 92.60% 93.9%
Online ∆αT Skill 68% 98% 92.50% 94.1%
July 15 cloud water bias (gm−2) 23.6 1.3 25.0 21.2

Table 2: Online performance metrics for a simulation with emulators active for both gscond and
precpd. The classifier predicts when cloud after gscond vanishes (Zero-cloud) and also when
∆g = 0. The columns show the impact of actually enforcing the predicted classes.

Metric No Classifier Enforce zero-cloud Also enforce ∆g = 0

gscond skill (∆gc) -81% -53% 94%
precpd skill (∆pc) 36% 36% 77%
July 15 cloud water bias (gm−2) 64.2 34.2 7.6

The combined ML simulation performs well by the skill metrics we have considered thus far, but it
has excessive cloud over the Antarctic Plateau (Figure 1). The globally trained emulator also has poor
offline skill there, so we tried using a separately trained condensation model for the high antarctic
plateau. This improved the offline skill, but not the online cloud biases The interested reader can refer
to Appendix D for more diagnostics of the online performance.

The combined gscond-precpd model presented above required months of iterative development so
we hope a brief description of our development trajectory will illuminate sensitivities we have not
rigorously proven. We began by attempting to emulate the combined action of gscond and precpd
with a single dense neural network and then with RNNs. The RNN was far better offline but worse
online. We then found that the gscond subroutine used additional inputs: the humidity, surface
pressure, and temperature after the last call to gscond (Appendix B). Accounting for these improved
the online performance of the RNN. We temperature-scaled the condensation rate to improve offline
skill in cold regions of Antarctica and the upper troposphere. The largest improvements in online skill
came from developing separate models for condensation and precipitation. These schemes represent
different physical processes and thus have different input-output structures and scales.

Figure 1: (a) Zonal average of cloud water mixing ratio (mg/kg) from the truth and (b) bias of the
emulation run. The average is computed from July 20 to July 31, inclusive.
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4 Conclusions

Our results demonstrate that feasibility of emulating cloud processes of a climate model with a
machine learning model. Large-scale condensation is perhaps the fastest physical process in a
climate model and we have developed the first emulator we know of it. Our final model respected
conservation laws, enforced the correct notion of grid-point locality, and employed classifiers to
represent the mixed discrete-continuous structure of the predictand. We also applied RNNs for the
precipitation process in a novel way to enforce the fact that rain and snow fall down rather than
up, leading to large improvements in offline and especially online skill. This architecture could be
useful for emulating other microphysical parameterizations, or more broadly parameterizations of
other atmospheric processes that have a directional structure (e.g. orographic wave drag, entraining
plumes).

Despite these successes, the detailed care required and the remaining issues over Antarctica temper
our expectations for machine learning parameterization of processes with strong time-scale separation.
This manifests as a fat-tailed tendency targets which probably require high capacity models and vast
training sets to learn. For emulators, we can generate infinite training data but cannot use very high
capacity models since emulators should be faster than the Fortran code they are emulating. Machine
learning parameterizations trained from observations or fine-resolution simulations face the further
challenge of finite data and noise.
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Broader Impacts

Climate change and extreme weather impact us all. This work helps illuminate a path for machine
learning to improve weather and climate forecasts through ML emulation of physical parameteriza-
tions, which can in principle speed up the model and aid in the assimilation of new observations into
the model. Such forecasts help underpin strategies to adapt to and mitigate future climate change and
extreme weather. They also provide key scientific evidence for climate change and build the case for
climate action. While we cannot envision in immediate negative impacts of this work, our method
could be applied to simulate physical systems we have not considered.
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A The Zhao-Carr Microphysics

This scheme handles both phase changes—condensation and evaporation—and precipitation pro-
cesses. The former is typically 10x larger in magnitude. The prognostic variables used by the scheme
are the temperature T , specific humidity q, and a combined cloud water/ice mixing ratio c.

The gscond scheme handles evaporation of cloud and condensation. Evaporation of cloud is given
by Ec = 1

∆t max[min[qs(f0 − f), c], 0]. f is relative humidity. f0 is a critical relative humidity
threshold which [14] describe as “was empirically set to 0.75 over land and 0.90 over ocean”. qs is
the saturation specific humidity.

Condensation Cg on the other hand is given by a more complex formula involving a relative humidity
tendency. See Eq. (8) of Zhao and Carr [14]. Both formulas depend only on the thermodynamic state
of a single (x, y, z) location, but there is some non-local dependence on the assumed phase of the
cloud and the corresponding latent heating rate.

The precpd scheme handles the conversion of cloud into rain/snow and the evaporation of the latter
as it falls through the atmosphere. Broadly speaking, it can be written as the following

Err = Er(T, f, Pr)

Ers = Er(T, f, Ps)

P = P (T, f, c, Pr, Ps)

Psm = Psm(T, f, c, Pr, Ps)

Pr =

∫ p

pt

(P − Err)dp/g

Ps =

∫ p

pt

(Psm − Ers)dp/g.

Most of the formulas are proportional to rainfall Pr and snowfall Pr rates at a given level, though
are some rate constants that depend exponentially on temperature. pt is the pressure at the top of the
atmosphere.
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B Implementation of the Zhao-carr Microphysics in FV3GFS

T after last
call to gscond

c after last
call to gscond

pressure after last
call to gscond

T

q

c

pressure

Grid scale con-
densation gscond

Precipitation
precpd Rest of Model

Figure 2: Information flow of the Zhao-carr microphysics within FV3GFS. Inputs (outputs) of a
given scheme are represented as inward (outward) arrows. The “after last call to gscond” inputs are
used to compute a relative humidity tendency that encompasses the rest of the model and prepcd.
This approach to computing the tendency effectively adds three new state variables to the model.
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C Architectures and Hyper-parameters

C.1 Input data and normalization

The condensation emulator has 12 3d input variables: air pressure, air temperature, air temperature
from the last time gscond was called (after-last gscond), cloud water mixing ratio, log of cloud, log
of humidity, log of humidity after-last-gscond, pressure thickness of each atmospheric layer, specific
humidity, specific humidity after-last-gscond. It has the following 2 2D inputs: surface air pressure
and surface air pressure after-last-gscond. The Fortran implementation uses the after-last-gscond
inputs to infer a relative humidity tendency. Before being passed to the ML models the 2D inputs
are replicated in the vertical direction, and all the variables are stacked along a channel dimension.
The final ML input x ∈ R79 × R14. This input vector is then centered by removing the per-level and
per-channel mean µ ∈ R79 × R14 computed over a subset of samples. Then it is normalized by the
standard deviation σ ∈ R14 computed over all vertical levels (79) and samples.

C.2 Condensation

C.2.1 Regression Model

The output of the condensation model is the change in cloud water ∆gc over a single step of the
gscond subroutine. The condensation rate depends exponentially on temperature due to the Clausius-
Clapeyron condition so we use a temperature-dependent normalization for the target. We divide the
range of temperatures into 50 equally spaced bins and compute the mean µ(T ) and standard deviation
σ(T ) of the target within each bin from a subset of the training data. In initial tests, this improved the
schemes performance in cold regions like the upper troposphere and Antarctica, though we have yet
to show this with formal ablations of our finalized configuration. Finally, the temperature scaled data
are normalized once more with a per-level mean and all-level standard deviation.

The same neural network f : R12 → R is used for each level independently. It is a multi-layer
perceptron, with 2 hidden layers of 256 nodes each and ReLU activation. It outputs the temperature-
scaled target ∆gc/σ(T ). To ensure the model has skill both in temperature-scaled and the final output
cloud co = ci +∆gc we include both terms in the mean-squared error loss function given by∣∣∣∣∆gc− µ(T )

σ(T )
− f(x)

∣∣∣∣2 + λ|c̃o − co|2.

The predicted output cloud is c̃o = f(x)σ(T ) + µ(T ). The weight λ = 50 000/Std[co] where Std
is the standard deviation computed from a subset of the training data. This is chosen to so that both
the predicted tendency and output cloud have O(1) contributions to the loss.

C.2.2 Classifier

For online application, we use a classifier to handle the mixed discrete-continuous nature of the target
variable ∆gc. It has the same architecture as the the regression model above, except with four target
variables to identify the following classes:

• ∆gc = 0

• cloud after gscond vanishes but none of the above,
• ∆gc > 0 but none of the above, and
• ∆gc < 0 but none of the above.

In online/offline evaluations, if the classifier identifies the first two cases then we enforce the
corresponding constraint on ∆gc. Otherwise we use the regression model. It is trained with a
categorical cross entropy loss with the same hyperparameters as the regression models except for
an increased learning rate of 0.001. After training the classifier is 98% accurate over all classes and
levels.

C.3 Precipitation

The precipitation emulator (precpd) has the same input set and input normalization strategy as
gscond, the states at the beginning of the time-step. However, it predicts these 3D outputs: the
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change in air temperature, humidity, and cloud due to the precipitation subroutine. It also predicts
surface precipitation rate which will moisten with the FV3GFS land-surface. All the outputs are scaled
by the standard deviation σ ∈ R computed over all vertical levels. The loss function includes MSE
terms for these direct predictands but also MSEs for the absolute values of cloud water, humidity, and
air temperature at the end of precpd. These MSEs are scaled empirically to have O(1) contribution
to the overall loss.

The precipitation emulator is vertically non-local unlike gscond. To enforce the prior that rain falls
down we use an recurrent neural network architecture (RNN). Let x[i] ∈ Rc be a vector with c
channels from level i ∈ [0, 79), where i = 0 is the top of atmosphere and i = 78 is the surface.
Similarly let h[i] be a hidden state vector such that h[i] = 0. Then a single layer of the RNN is given
by h[i+ 1] = (Whh[i] +Wxx[i] + b)+, where (·)+ is the ReLU activation function. We stack two
such layers, with a hidden states of 256 channels. Affine transformations map the final hidden state to
the output fields without mixing vertical levels like this y[i] = Ah[i] + b. This architecture therefore
ensures that ∇x[j]y[i] = 0 if j > i.

11



D Other aspects of online performance
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Figure 3: The global average cloud water mixing ratio (mg kg−1) as a function of time and pressure.
It shows (a) the truth and (b) bias of the emulated run.
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