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Abstract

In the light of GPU accelerations, sequential operations such as solving ordinary
differential equations can be bottlenecks for gradient evaluations and hinder po-
tential speed gains. In this work, we focus on growth functions and their time
derivatives in cosmological particle mesh simulations and show that these are the
majority time cost when using gradient based inference algorithms. We propose to
construct novel conditional B-spline emulators which directly learn an interpolating
function for the growth factor as a function of time, conditioned on the cosmology.
We demonstrate that these emulators are sufficiently accurate to not bias our results
for cosmological inference and can lead to over an order of magnitude gains in
time, especially for small to intermediate size simulations.

1 Introduction

Field level inference for cosmological analysis simulates the survey observations data at the level of
full field by starting all the way from the initial density distribution at the beginning of the Universe
and then evolving dark matter particles under gravity with Particle Mesh (PM) N-Body simulations.
The goal then is to infer the cosmological parameters along with the initial conditions at all points in
the Universe. This challenging high dimensional inference relies on using differentiable simulations
[1–4] and coupling them with gradient based algorithms such as Hamiltonian Monte Carlo (HMC) [5].
Due to the iterative nature of these algorithms, it is crucial for these simulators to be simultaneously
fast and accurate.

Recent works have used advances in automatic differentiation libraries such Tensorflow and Jax
to build these simulators like FlowPM [2] and pmwd [4]. An added advantage of this is that the
simulations can now exploit efficient GPU parallelizations and accelerations for significant speed-
ups. However this has inadvertently made other sequential operations a bottleneck to fully realize
potential gains. One such example is solving ordinary differential equations (ODE) wherein gradient
calculation has to backpropagate through all the sequential computations of the integrator [6]. In
cosmological simulations, the growth factor of density fields and distance functions are estimated
by solving a system of ODEs as a function of time. We find that for small to intermediate PM
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simulations, backpropagating through growth function ODE can be the majority time cost. Thus in
this work, we seek to replace this ODE solution with trained emulators.

In the past couple years, many works have built emulators for time intensive operations in cosmo-
logical analysis pipeline [7, 8]. One way these works learn the emulator is by training a multi-layer
perceptron (MLP) to fit the quantity of interest at some fixed points in the domain. Then during
analysis, they construct an interpolating function through these points. However, it is redundant to
query an MLP and then the interpolating function. For accurate interpolation, these output points
also need to be densely sampled, making output of MLP high dimensional and challenging to learn.
An alternative approach is to learn the coefficients for principal components basis but that limits the
accuracy based on the number of principal components used. Depending on the analysis, it also does
not necessarily solve the interpolation redundancy.

In this work, we take a different approach and learn the emulator by directly learning the components
of an interpolating function. Specifically, we learn a B-Spline emulator [9] that can be parameterized
by a small number of knot points and weights to model a smooth, high order differentiable function.
We begin by setting up the growth function ODE in section 2 and follow it with discussing our
emulator in section 3. In section 4, we show that the emulator meets desired accuracy and quantify
achieved gains before concluding with a brief discussion in section 5.

2 Growth function in cosmology

Cosmological simulations evolve dark matter over-density field under gravitational force in an
expanding universe. This evolution is governed by solving a system of coupled non-linear partial
differential equations called Vlasov-Poisson equations. However at the linear order and after making
a number of simplifying assumptions not detailed here for brevity, this evolution is governed by the
following ODE [10]

∂2δ(x, t)

∂t2
+ 2H(t)

∂δ(x, t)

∂t
=

3

2
Ωm(t)H2

0δ(x, t) (1)

where H(a) = H0(
Ωm

a3 + ΩΛ)
0.5 is the Hubble parameter, H0 is the Hubble constant, Ωm(a) =

Ωm

a3

H2
0

H2(a) is the matter density, ΩΛ is the dark energy density and a is the scale factor of the Universe,
defined as H(a) = 1

a
da
dt . For simplicity, in the following we use a as a measure of time instead of t

since that is the convention in the particle mesh simulations of interest here.

At linear order, the evolution of the density field can be decoupled into spatial and time contributions
by writing δ(x, a) = D1(a)δ(x, a0) for some "reference" time a0 and D1(a) called the linear growth
factor [11]. Then the time dependence of the growth factor is

a2
d2D1(a)

da2
+
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Ωm(a)

2
+ 2

)
a
dD1(a)

da
=

3

2
Ωm(a)D1(a) (2)

Being a second order equation, this has two solutions. One of them increases with time and is referred
to as growing mode (D+

1 ) while the other decays with time and hence is generally ignored in the
simulations. At higher orders in the Taylor expansion of the density field, we can define a similar
growth function at the second order for δ(2)(x, a) that follows the ODE

a2
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)
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dD2(a)

da
=

3

2
Ωm(a)

[
D2(a)− (D+

1 (a))
2
]

(3)

2.1 Growth function in PM simulation

Particle mesh simulations evolve this density field by computationally evolving dark matter particles
under gravity. At every time step, these simulations consist of three consecutive operations- kick step
updates the particle momentum, drift step which updates the positions of the particles and force step
which estimates the force on each particle in this new configuration. In FastPM simulations [12], the
growth factors determine the scaling of the particle displacement in the drift step. For a time step
from a0 to a1, the displacement is given by

x(a1) = x(a0) +
H0

arH(ar)

D(a1)−D(a0)

dD/da|ar

p(ar) (4)
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Figure 1: At Ωm = 0.3, the output of emulator/ML (blue lines) compared to the true value (orange
lines). The first two columns show the first and second order growth function (D1 and D2). The
third and fourth columns show the derivatives of D1 and D2 with respect to Ωm. The function values
(dotted) are plotted together with the two derivatives with respect to a (dashed and dash-dotted).

where ar is a reference time between a0 and a1 and p is the particle momentum.

Thus at every drift step, we need to estimate the growth factor at the beginning and the end time of
the step, as well as its time derivative at a reference point in between. While not shown here (but see
[12]), the momentum update similarly depends on two time derivatives, dD/da and d2D/da2 of the
growth function. We show all these functions for a fiducial cosmology in Figure 1.

3 B-spline Emulator

We are interested in constructing an emulator for the growth factor and its derivatives as a function of
cosmology. In the standard ΛCDM model, Eq. 2 tells us that the growth factor is only a function of
Ωm since Ωm +ΩΛ = 1. Hence our emulator has only one input.

We learn a B-spline (or basis spline) function [9] to model the growth function. B-splines are powerful
since they are the maximally differentiable interpolative basis function and any spline function of a
given degree n can be expressed as a unique linear combination of B-splines of that degree. B-splines
are defined by the number of interior "knots" N. Thus let t0, t1, ..., tN , tN+1 be a non-decreasing
sequence of knots. These knots are augmented by repeating exterior knots t0 and tN+1 n times and
for each augmented knot ti, a set of basis functions Bi,j , ∀j = 0, 1, ..., n is defined recursively from
j = 0 to n. A B-spline function is then the linear combinations of these basis functions with weights
βi

B(x) =

i=N+n∑
i=0

βiBi,n(x), x ∈ [t0, tN+1] (5)

Thus a B-spline function B(x) is completely defined given a sequence of knots ti and weights βi. In
our emulator, we train an MLP to predict these knots and weights for an input cosmology.

4 Results

We train our emulator as a function Ωm to predict the knot points and weights of cubic (n = 3)
B-spline function. The emulator works in the range of Ωm ∈ [0.1, 0.5]. a is in the range of 0 to 1.
1000 random values of Ωm from 0.05 to 0.55 are generated by uniform sampling for training. There
are 256 points evenly distributed in the range of a, including 0 and 1. The training, validation and
testing data sets are of size 800, 100 and 100 respectively.

We find that using only 8 knots for a ∈ [0, 1] is sufficient for achieving sub-percent accuracy. For the
MLP architecture, there is first an input layer. The output of the input layer is duplicated and fed into
two parts in parallel, each having a hidden layer and an output layer. The two parts account for the
calculation of knot points and weights respectively. The input layer and two hidden layers have 64
neurons each. The neurons of output layers depend on the number of knots. In our case, the MLP
outputs 8 knot points and the corresponding weights. One knot is fixed at a = 0. We implement our
emulator as part of pmwd code [4]. We begin by showing the accuracy of our emulator in Figure 2.
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Figure 2: (Subplot 1 and 3) Error of growth functions at Ωm = 0.3 and a ∈ [0, 1].
(Subplot 2 and 4) Maximum error of gradients across a ∈ [0, 1] for Ωm ∈ [0.1, 0.5].
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Figure 3: (Left) Trajectory of MAP optimization (middle, right) Marginal posteriors sampled with
HMC for a toy field level inference problem. Dashed black lines are true parameters.

We show errors in value and gradient for a reference cosmology of Ωm = 0.3. In addition, for every
cosmology, we also show the maximum error among all a ∈ [0, 1] in the last two panels. The error in
value is always less than 0.002 and in gradient is always less than 0.05. Next, we show that this level
of agreement does not impact the accuracy of our inference.

As noted in the beginning, the objective of using differentiable PM simulations is to be able to
access the gradients of cosmology parameters for field level inference. We mock this pipeline with
a simulated data to infer Ωm and As (scalar amplitude) parameters. Figure 3 shows the results
for two gradient based approaches when using our emulator versus ODE formulation for growth
function. In the left panel, we show the trajectory followed when doing optimization to find the
MAP (maximum-a-posteriori) estimate of the cosmology parameters. The last two panels show the
marginal posteriors sampled with HMC for the same problem. The agreement between our emulator
and ODE solution validates that the accuracy of the emulator and its gradients is sufficient for correct
inference.

Finally, in Figure 4, we show the timings for gradient evaluation when using our emulator versus the
adaptive Dormand-Prince ODE solver and Runge Kutta (order 4, solved at 256 points in a ∈ [0, 1]).
For N < 128, increasing the simulation size does not change the time cost, demonstrating that ODE
poses the bottleneck. In this case, we can gain up to an order of magnitude in time with the emulator.
For larger simulations, PM cost starts to dominate as expected and we gain up to a factor of 2.

5 Discussion

In this work, we demonstrate that for highly optimized PM simulations exploiting GPU accelerations,
sequential operations such as solving ODE for growth function can be the majority time cost for
gradient evaluations. We replace them with novel B-Spline emulators which can lead to an order of
magnitude gains for small to intermediate simulations. While the gains are less remarkable for large
N ≥ 256 simulations, it is important to note that most of the methodology development is done on
the small simulations with large runs primarily done only at the final analysis. Hence these gains will
still lead to non-trivial time savings in developing novel methods for cosmological inference. We also
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Figure 4: Time for 100 gradient evaluations with respect to cosmology parameter for simulations
with of different number of particles (N). 0 time step corresponds to setting initial conditions.

anticipate similar bottleneck for distance calculation in weak lensing simulation and plan to explore
that in the future. In the next work, we plan to extend the emulator to account for other cosmological
parameters, such as the curvature Ωk, and dark energy parameters w0 and wa.
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