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Abstract

We explore the possibility of using deep learning to generate multifield images
from state-of-the-art hydrodynamic simulations of the CAMELS project. We use
a generative adversarial network to generate images with three different channels
that represent gas density (Mgas), neutral hydrogen density (HI), and magnetic
field amplitudes (B). The quality of each map in each example generated by the
model looks very promising. The GAN considered in this study is able to generate
maps whose mean and standard deviation of the probability density distribution of
the pixels are consistent with those of the maps from the training data. The mean
and standard deviation of the auto power spectra of the generated maps of each
field agree well with those computed from the maps of IllustrisTNG. Moreover, the
cross-correlations between fields in all instances produced by the emulator are in
good agreement with those of the dataset. This implies that all three maps in each
output of the generator encode the same underlying cosmology and astrophysics.

1 Introduction

Multiwavelength astronomy has been identified as a priority in the 2020 decadal survey. Current
and upcoming missions will survey the Universe at different wavelengths, from X-rays to radio:
e.g. e-Rosita, SKA, Euclid, DESI, CMB-S4, Rubin and Roman Observatories, HIRAX, CHIME,
Spherex. The data from these missions is expected to help us improve our knowledge on both galaxy
formation and cosmology. In order to maximize the scientific outcome of these missions, accurate
theoretical predictions are needed for different physical fields (different wavelengths). Hydrodynamic
simulations are the most sophisticated tools that can be used to study and model this. Their main
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drawback is their computational cost, that being very large, limits the volume and resolution of these
simulations [1]. Being able to speed up these simulations is critical in order to perform a large variety
of tasks: from parameter inference to model discrimination. Previous studies aimed at accelerating
various cosmological simulations of different fields using generative models [2, 3, 4, 5, 6, 7, 8].
In this work we study the possibility of using generative adversarial networks (GANs) to generate
multifield images –2D maps where every channel corresponds to a different physical field– that have
the desired statistical properties for each field individually but also their cross-correlations. This is
crucial in order to extract most of information from different large scale surveys. We note that while
the generation of multifield images has been performed in the past [see e.g. 9] this work contributes
to that direction by using a more sophisticated model and a richer and more complex dataset.

2 Methods

2.1 Data

We make use of images from the CAMELS Multifield Dataset (CMD)[10]. CMD contains hundreds
of thousands of 2D maps generated from the output of state-of-the art hydrodynamic simulations of
CAMELS [11] for 13 different physical fields, from dark matter to magnetic fields. Every image
represents a region of dimensions 25 × 25 × 5 (h−1Mpc)3 at z = 0. In this work we use images
representing three different fields –gas mass density (Mgas), neutral hydrogen density (HI), and
magnetic fields magnitude (B)– generated from the IllustrisTNG LH set [see 11, 12, for details].
Every field contains 15,000 maps, each of them having 256 × 256 pixels, and the images are
characterized by six numbers: two cosmological parameters (Ωm and σ8) and four astrophysical
parameters (ASN1, ASN1, AAGN1, AAGN2) that characterize the efficiency of supernova and AGN
feedback. The multifields are produced by stacking 3 images that represent the same physical region
but represent the different fields: Mgas, HI, and B. Thus, our images have 256 × 256 pixels and
contain three channels.

2.2 Model and training procedure

We consider the Generative Adversarial Network (GAN) described in [13], who introduced some
novelties such that the generative model is capable of synthesizing high-resolution images while
being trained with a relatively small number of examples. They prescribed a modified version of
skip-layer connection [14], named Skip-Layer Excitation (SLE), which, like the original skip-layer,
allows the gradient flow to be preserved through the layers. Unlike the skip connection in [14], SLE
does not require the two inputs to have the same dimension as the output results from channel-wise
multiplications between the two inputs, according to [13]

y = F(xlow,W) · xhigh, (1)
where xlow and xhigh are two inputs which are feature maps with lower and higher resolution
respectively, F denotes a module with learnable weights W that operates on xlow. The generator
G in our model contains three SLE modules that perform channel-wise multiplications of maps at
4× 4, 8× 8 and 16× 16 resolutions with maps of 64× 64, 128× 128, and 256× 256 resolutions
respectively.

Following the prescription in [13], the discriminator D, treated as an encoder, is trained with three
decoders in order to enhance its ability to extract the salient features from the input maps. The auto-
encoder, which consists of D and the decoders, is optimized using only real images by minimizing
the reconstruction loss [13]

Lrecons = Ef∼D(x)[||G(f)− T (x)||], (2)

where f denotes intermediate feature maps with resolutions 8 × 8 and 16 × 16 from D, G is the
decoding process and T represents some transformations on the real images, namely cropping and
downsampling, on the real images x. For the adversarial training, we have that [13]

LD = −Ex∼pdata(x)[min(0,−1 +D(x))]− Ez∼pz(z)[min(0,−1−D(G(z)))] + Lrecons (3)

as the loss function for D and
LG = −Ez∼pz(z)[D(G(z))], (4)
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Figure 1: The top row shows images of gas mass density (left), neutral hydrogen mass density
(middle), and magnetic fields strength (right) from a state-of-the hydrodynamic simulation from the
CAMELS project. Note that three images represent the same region in space. The bottom row shows
the same but from the our GAN model. From visual inspection we can see that the morphological
features from the different fields are very well reproduced by the model.

the loss for G. It is worth noting that z, which is a vector from latent space, is drawn from a
standard normal distribution. Our implementation is based on this. We emphasize that our model is
currently not able to perform the image generation conditioned on the value of the cosmological and
astrophysical parameters.

For training we set the learning rate to 0.0002 and employ the Adam optimizer. The model is trained
with 10,000 multifield images for 700 epochs, which take about 12 minutes each, in batches of 8
instances on a NVIDIA GeForce GTX 1080 Ti.

3 Results

Fig. 1 shows the three channels from a real (top row) and generated (bottom row) multifield image.
From visual inspection we can see that the morphological features associated to each field, from
voids, filaments, halos, and bubbles, are generated with good precision. We now make use of
several summary statistics to quantify the agreement between the statistical properties of the true and
generated multifield images.

We first consider the probability distribution function of the pixel values of the different images. We
compute the µPDF and standard deviation σPDF as a function of pixel value for each field using
1,500+1,500 unseen+generated multifield images. Results are shown in Fig. 2. We find that our
GAN is able to encode the key features of each field, as suggested by the overall good agreement
between the µPDF of real and fake maps in each channel (see top panel in Figure2). The ability of the
generator to capture the variability of the pixel distribution of each field suggests that it has learned a
robust lower dimension representation of the data.

Next, we quantify the agreement between clustering properties of the real and generated images by
computing their auto- and cross-power spectra using PYLIANS [15]. For the 1,500+1,500 real and
generated images we compute their auto-power spectrum for each channel and their cross-power
spectrum between channels. We show the mean and standard deviation of the results for each
wavenumber in Fig. 3 top plot in each panel, whereas the relative difference between the two power
spectra at each k-mode

(
Pfake(k)
Preal(k)

− 1
)

is shown at the bottom plot in each panel (solid green). As can
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Figure 2: We have computed the probability distribution function (PDF) for 1,500 unseen real images
(red) plus 1,500 generated images (blue) for each channel (field). This plot shows the mean (top)
and standard deviation (bottom) of the PDF as a function pixel value for the three different fields.
The agreement between the results of the true and generated images is good overall, however some
statistical differences at the tails of the distributions can be noticed.
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Figure 3: Same as Fig. 2 but for the cross-power spectrum (top row) and auto-power spectrum
(bottom row). Relative error between the two power spectra (fake and real), denoted by solid green,
is presented at the bottom part of each panel. As can be seen, the statistical agreement between the
true and generated images is relatively good for this statistics. The title of each panel displays the
considered field(s).
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be seen, although the relatively larger difference on small scales (k > 10 h/Mpc), the model is able
to reproduce the overall properties of the auto- and cross-power spectra from the real images very
well, including their scatter induced by cosmic variance and changes in cosmology and astrophysics.

The above statistical tests indirectly point towards the fact that our model is not affected by mode
collapse, an issue GANs are known to suffer from, making their training challenging. In order
to further test this, we have created multifield images from different latent-space points, and by
interpolating among them (in latent-space) we find a smooth transition between the images and their
channels.

4 Conclusions and future work

We have used a generative model to produce multifield images with very similar statistical properties
(as quantified by pdfs and power spectra) orders of magnitude faster than the ones produced from the
very computationally demanding state-of-the-art hydrodynamic simulations. The agreement in the
cross-power spectra indicate the models is able to preserve Fourier phases (on large scales) across
channels, and therefore represents a great tool for multiwavelength studies. We note that although
our model seems able to capture the effects of cosmic variance and variations in cosmology and
astrophysics, it is currently unable to condition the image generation on the value of those parameters
(cosmological and astrophysical). In future work we will extend our model to be able to perform this
task.

5 Broader impact

Multiwavelength astronomy was recommended as a priority in the recent decadal survey in 2022,
given its potential to improve our understanding on galaxy formation and cosmology. We have used a
generative model that is able to produce multifield images from different physical fields that is orders
of magnitude faster than the method used to generate the true images. Given the good statistical
properties of the generated images, they can be used for a variety of task, from pipeline design to
studies involving cross-correlations. Our model is general and can be applied to other datasets, such
as images of galaxy fields to X-rays and SZ maps. We believe our model, and further developments
on it, has the potential to play an important role in the multiwavelength astronomy era.
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